ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-31
    Description: An unusual surface 'growth' was found during scanning electron microscope (SEM) investigations of the Thermal Control Surface Experiment (TCSE) S0069 front thermal cover. This 'growth' is similar to the cone type whisker growth phenomena as studied by G. K. Wehner beginning in the 1960's. Extensive analysis has identified the most probable composition of the whiskers to be a silicate type glass. Sources of the growth material are outgassing products from the experiment and orbital atomic oxygen, which occurs naturally at the orbital altitudes of the LDEF mission in the form of neutral atomic oxygen. The highly ordered symmetry and directionality of the whiskers are attributed to the long term (5.8 year) stable flight orientation of the LDEF.
    Keywords: NONMETALLIC MATERIALS
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 2; p 771-790
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: Past and present efforts by the authors to further understanding of the ceramic matrix composite (CMC) material used in the valve components of the Orion Launch Abort System (LAS) Attitude Control Motor (ACM) will be presented. The LAS is designed to quickly lift the Orion Crew Exploration Vehicle (CEV) away from its launch vehicle in emergency abort scenarios. The ACM is a solid rocket motor which utilizes eight throttleable nozzles to maintain proper orientation of the CEV during abort operations. Launch abort systems have not been available for use by NASA on manned launches since the last Apollo ]Saturn launch in 1975. The CMC material, carbon-carbon/silicon-carbide (C/C-SiC), is manufactured by Fiber Materials, Inc. and consists of a rigid 4-directional carbon-fiber tow weave reinforced with a mixed carbon plus SiC matrix. Several valve and full system (8-valve) static motor tests have been conducted by the motor vendor. The culmination of these tests was the successful flight test of the Orion LAS Pad Abort One (PA ]1) vehicle on May 6, 2010. Due to the fast pace of the LAS development program, NASA Marshall Space Flight Center assisted the LAS community by performing a series of material and component evaluations using fired hardware from valve and full ]system development motor tests, and from the PA-1 flight ACM motor. Information will be presented on the structure of the C/C-SiC material, as well as the efficacy of various non ]destructive evaluation (NDE) techniques, including but not limited to: radiography, computed tomography, nanofocus computed tomography, and X-ray transmission microscopy. Examinations of the microstructure of the material via scanning electron microscopy and energy dispersive spectroscopy will also be discussed. The findings resulting from the subject effort are assisting the LAS Project in risk assessments and in possible modifications to the final ACM operational design.
    Keywords: Composite Materials
    Type: M11-0243 , 2011 National Space and Missile Materials Symposium (NSMMS); Jun 27, 2011 - Jul 01, 2011; Madison, WI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-18
    Description: We have previously outlined a strategy for the detection of fossils [Storrie-Lombardi and Hoover, 2004] and extant microbial life [Storrie-Lombaudi and Hoover, 20051 during robotic missions to Mars using co-registered structural and chemical signatures. Data inputs included image lossless compression indices to estimate relative textural complexity and elemental abundance distributions. Two exploratory classification algorithms (principal component analysis and hierarchical cluster analysis) provide an initial tentative classification of all targets. Nonlinear stochastic neural networks are then trained to produce a Bayesian estimate of algorithm classification accuracy. The strategy previously has been successful in distinguishing regions of biotic and abiotic alteration of basalt glass from unaltered samples. [Storrie-Lombardi and Fisk, 2004; Storrie-Lombardi and Fisk, 2004] Such investigations of abiotic versus biotic alteration of terrestrial mineralogy on Earth are compromised by .the difficulty finding mineralogy completely unaffected by the ubiquitous presence of microbial life on the planet. The renewed interest in lunar exploration offers an opportunity to investigate geological materials that may exhibit signs of aqueous alteration, but are highly unlikely to contain contaminating biological weathering signatures. We here present an extension of our earlier data set to include lunar dust samples obtained during the Apollo 17 mission. Apollo 17 landed in the Taurus-Littrow Valley in Mare Serenitatis. Most of the rock samples from this region of the lunar highlands are basalts comprised primarily of plagioclase and pyroxene and selected examples of orange and black volcanic glass. SEM images and elemental abundances (C6, N7, O8, Na11, Mg12, Al13, Si14, P15, S16, Cll7, K19, Ca20, Fe26) for a series of targets in the lunar dust samples are compared to the extant cyanobacteria, fossil trilobites, Orgueil meteorite, and terrestrial basalt targets previously discussed. The data set provides a first step in producing a quantitative probabilistic methodology for geobiological analysis of returned lunar samples or in situ exploration.
    Keywords: Geophysics
    Type: SPIE Optics and Photonics Symposium 2006: Instruments Methods and Missions for Astrobiology IX; Aug 13, 2006 - Aug 17, 2006; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The wing and underbelly reconstruction of Space Shuttle Columbia took place at the Shuttle Landing Facility Hangar after the accident which destroyed STS-107. Fragments were placed on a grid according to their original location on the orbiter. Some Reinforced Carbon-Carbon (RCC) panels of the left wing leading edge and other parts from both leading edges were recovered and incorporated into the reconstruction. The recovered parts were tracked on a database according to a number and also tracked on a map of the orbiter. This viewgraph presentation describes the process of failure analysis undertaken by the Materials and Processes (M&P) Problem Resolution Team. The team started with factual observations about the accident, and identified highest level questions for it to answer in order to understand where on the orbiter failure occured, what component(s) failed, and what was the sequence of events. The finding of Columbia's MADS/OEX data recorder shifted the focus of the team's analysis to the left wing leading edge damage. The team placed particular attention on slag deposits on some of the RCC panels. The presentation lists analysis techniques, and lower level questions for the team to answer.
    Keywords: Space Transportation and Safety
    Type: Mississippi State University Materials Working Group Seminar; Oct 15, 2003; Starksville, MS; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Composite Materials; Spacecraft Propulsion and Power
    Type: M16-5030 , SciTech 2016: AIAA Structures, Structural Dynamics and Materials Conference; Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: During the period of International Space Station (ISS) Increments 30 and 31, crewmember reports cited differences in the cabin environment relating to particulate matter and fiber debris compared to earlier experience as well as allergic responses to the cabin environment. It was hypothesized that a change in the cabin atmosphere's suspended particulate matter load may be responsible for the reported situation. Samples were collected and returned to ground-based laboratories for assessment. Assessments included physical classification, optical microscopy and photographic analysis, and scanning electron microscopy (SEM) evaluation using energy dispersive X-ray spectrometry (EDS) methods. Particular points of interest for assessing the samples were for the presence of allergens, carbon dioxide removal assembly (CDRA) zeolite dust, and FGB panel fibers. The results from the physical classification, optical microscopy and photographic analysis, and SEM EDS analysis are presented and discussed.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2014-166 , M14-3647 , International Conference on Environmental Systems; Jul 13, 2014 - Jul 17, 2014; Tuscon, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...