ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2016-02-09
    Description: Intrinsic population growth rate ( r max ) is an important parameter for many ecological applications, such as population risk assessment and harvest management. However, r max can be a difficult parameter to estimate, particularly for long-lived species, for which appropriate life table data or abundance time series are typically not obtainable. We describe a method for improving estimates of r max for long-lived species by integrating life-history theory (allometric models) and population-specific demographic data (life table models). Broad allometric relationships, such as those between life history traits and body size, have long been recognized by ecologists. These relationships are useful for deriving theoretical expectations for r max , but r max for real populations may vary from simple allometric estimators for “archetypical” species of a given taxa or body mass. Meanwhile, life table approaches can provide population-specific estimates of r max from empirical data, but these may have poor precision from imprecise and missing vital rate parameter estimates. Our method borrows strength from both approaches to provide estimates that are consistent with both life-history theory and population-specific empirical data, and are likely to be more robust than estimates provided by either method alone. Our method uses an allometric constant: the product of r max and the associated generation time for a stable-age population growing at this rate. We conducted a meta-analysis to estimate the mean and variance of this allometric constant across well-studied populations from three vertebrate taxa (birds, mammals, and elasmobranchs) and found that the mean was approximately 1.0 for each taxon. We used these as informative Bayesian priors that determine how much to “shrink” imprecise vital rate estimates for a data-limited population toward the allometric expectation. The approach ultimately provides estimates of r max (and other vital rates) that reflect a balance of information from the individual studied population, theoretical expectation, and meta-analysis of other populations. We applied the method specifically to an archetypical petrel (representing the genus Procellaria ) and to white sharks ( Carcharodon carcharias ) in the context of estimating sustainable fishery bycatch limits.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-01
    Description: Context. Interest in the use of the Chajnantor area for millimeter and submillimeter astronomy is increasing because of its excellent atmospheric conditions. Knowing the general site annual variability in precipitable water vapor (PWV) can contribute to the planning of new observatories in the area. Aims. We seek to create a 20-year atmospheric database (1997−2017) for the Chajnantor area in northern Chile using a single common physical unit, PWV. We plan to extract weather relations between the Chajnantor Plateau and the summit of Cerro Chajnantor to evaluate potential sensitivity improvements for telescopes fielded in the higher site. We aim to validate the use of submillimeter tippers to be used at other sites and use the PWV database to detect a potential signature for local climate change over 20 years. Methods. We revised our method to convert from submillimeter tipper opacity to PWV. We now include the ground temperature as an input parameter to the conversion scheme and, therefore, achieve a higher conversion accuracy. Reults. We found a decrease in the measured PWV at the summit of Cerro Chajnantor with respect to the plateau of 28%. In addition, we found a PWV difference of 1.9% with only 27 m of altitude difference between two sites in the Chajnantor Plateau: the Atacama Pathfinder Experiment and the Cosmic Background Imager near the Atacama Large Millimeter Array center. This difference is possibly due to local topographic conditions that favor the discrepancy in PWV. The scale height for the plateau was extracted from the measurements of the plateau and the Cerro Chajnantor summit, giving a value of 1537 m. Considering the results obtained in this work from the long-term study, we do not see evidence of PWV trends in the 20-year period of the analysis that would suggest climate change in such a timescale.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...