ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-10-01
    Description: The Complete Calibration of the Colour–Redshift Relation survey (C3R2) is a spectroscopic effort involving ESO and Keck facilities designed specifically to empirically calibrate the galaxy colour–redshift relation – P(z|C) to the Euclid depth (iAB = 24.5) and is intimately linked to the success of upcoming Stage IV dark energy missions based on weak lensing cosmology. The aim is to build a spectroscopic calibration sample that is as representative as possible of the galaxies of the Euclid weak lensing sample. In order to minimise the number of spectroscopic observations necessary to fill the gaps in current knowledge of the P(z|C), self-organising map (SOM) representations of the galaxy colour space have been constructed. Here we present the first results of an ESO@VLT Large Programme approved in the context of C3R2, which makes use of the two VLT optical and near-infrared multi-object spectrographs, FORS2 and KMOS. This data release paper focuses on high-quality spectroscopic redshifts of high-redshift galaxies observed with the KMOS spectrograph in the near-infrared H- and K-bands. A total of 424 highly-reliable redshifts are measured in the 1.3 ≤ z ≤ 2.5 range, with total success rates of 60.7% in the H-band and 32.8% in the K-band. The newly determined redshifts fill 55% of high (mainly regions with no spectroscopic measurements) and 35% of lower (regions with low-resolution/low-quality spectroscopic measurements) priority empty SOM grid cells. We measured Hα fluxes in a 1.″2 radius aperture from the spectra of the spectroscopically confirmed galaxies and converted them into star formation rates. In addition, we performed an SED fitting analysis on the same sample in order to derive stellar masses, E(B − V), total magnitudes, and SFRs. We combine the results obtained from the spectra with those derived via SED fitting, and we show that the spectroscopic failures come from either weakly star-forming galaxies (at z 〈  1.7, i.e. in the H-band) or low S/N spectra (in the K-band) of z 〉  2 galaxies.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-15
    Description: We examine a sample of 1495 galaxies in the CANDELS fields to determine the evolution of two-component galaxies, including bulges and discs, within massive galaxies at the epoch 1 〈  z  〈 3 when the Hubble sequence forms. We fit all of our galaxies’ light profiles with a single Sérsic fit, as well as with a combination of exponential and Sérsic profiles. The latter is done in order to describe a galaxy with an inner and an outer component, or bulge and disc component. We develop and use three classification methods (visual, F -test and the residual flux fraction) to separate our sample into one-component galaxies (disc/spheroids-like galaxies) and two-component galaxies (galaxies formed by an ‘inner part’ or bulge and an ‘outer part’ or disc). We then compare the results from using these three different ways to classify our galaxies. We find that the fraction of galaxies selected as two-component galaxies increases on average 50 per cent from the lowest mass bin to the most massive galaxies, and decreases with redshift by a factor of 4 from z  = 1 to 3. We find that single Sérsic ‘disc-like’ galaxies have the highest relative number densities at all redshifts, and that two-component galaxies have the greatest increase and become at par with Sérsic discs by z  = 1. We also find that the systems we classify as two-component galaxies have an increase in the sizes of their outer components, or ‘discs’, by about a factor of 3 from z  = 3 to 1.5, while the inner components or ‘bulges’ stay roughly the same size. This suggests that these systems are growing from the inside out, whilst the bulges or protobulges are in place early in the history of these galaxies. This is also seen to a lesser degree in the growth of single ‘disc-like’ galaxies versus ‘spheroid-like’ galaxies over the same epoch.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-09-17
    Description: We present evidence for a strong relationship between galaxy size and environment for the quiescent population in the redshift range 1 〈  z  〈 2. Environments were measured using projected galaxy overdensities on a scale of 400 kpc, as determined from ~96 000 K -band-selected galaxies from the UKIDSS Ultra Deep Survey (UDS). Sizes were determined from ground-based K -band imaging, calibrated using space-based CANDELS HST observations in the centre of the UDS field, with photometric redshifts and stellar masses derived from 11-band photometric fitting. From the resulting size–mass relation, we confirm that quiescent galaxies at a given stellar mass were typically ~50 per cent smaller at z  ~ 1.4 compared to the present day. At a given epoch, however, we find that passive galaxies in denser environments are on average significantly larger at a given stellar mass. The most massive quiescent galaxies ( M *  〉 2 10 11  M ) at z  〉 1 are typically 50 per cent larger in the highest density environments compared to those in the lowest density environments. Using Monte Carlo simulations, we reject the null hypothesis that the size–mass relation is independent of environment at a significance 〉4.8 for the redshift range 1 〈  z  〈 2. In contrast, the evidence for a relationship between size and environment is much weaker for star-forming galaxies.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-12-14
    Description: We combine photometry from the Ultra Deep Survey (UDS), Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) UDS and CANDELS the Great Observatories Origins Deep Survey-South (GOODS-S) surveys to construct the galaxy stellar mass function probing both the low- and high-mass end accurately in the redshift range 0.3 〈  z  〈 3. The advantages of using a homogeneous concatenation of these data sets include meaningful measures of environment in the UDS, due to its large area (0.88 deg 2 ), and the high-resolution deep imaging in CANDELS ( H 160  〉 26.0), affording us robust measures of structural parameters. We construct stellar mass functions for the entire sample as parametrized by the Schechter function, and find that there is a decline in the values of and of α with higher redshifts, and a nearly constant M * up to z  ~ 3. We divide the galaxy stellar mass function by colour, structure, and environment and explore the links between environmental overdensity, morphology, and the quenching of star formation. We find that a double Schechter function describes galaxies with high Sérsic index ( n  〉 2.5), similar to galaxies which are red or passive. The low-mass end of the n  〉 2.5 stellar mass function is dominated by blue galaxies, whereas the high-mass end is dominated by red galaxies. This shows that there is a possible link between morphological evolution and star formation quenching in high mass galaxies, which is not seen in lower mass systems. This in turn suggests that there are strong mass-dependent quenching mechanisms. In addition, we find that the number density of high-mass systems is elevated in dense environments, suggesting that an environmental process is building up massive galaxies quicker in over densities than in lower densities.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-07-02
    Description: Due to significant galaxy contamination and impurity in stellar mass selected samples (up to 95 per cent from z  = 0–3), we examine the star formation history, quenching time-scales, and structural evolution of galaxies using a constant number density selection with data from the United Kingdom Infra-Red Deep Sky Survey Ultra-Deep Survey field. Using this methodology, we investigate the evolution of galaxies at a variety of number densities from z  = 0–3. We find that samples chosen at number densities ranging from 3  x  10 –4 to 10 –5 galaxies Mpc –3 (corresponding to z  ~ 0.5 stellar masses of M * = 10 10.95-11.6 M 0 ) have a star-forming blue fraction of ~50 per cent at z  ~ 2.5, which evolves to a nearly 100 per cent quenched red and dead population by z  ~ 1. We also see evidence for number density downsizing, such that the galaxies selected at the lowest densities (highest masses) become a homogeneous red population before those at higher number densities. Examining the evolution of the colours for these systems furthermore shows that the formation redshift of galaxies selected at these number densities is z form  〉 3. The structural evolution through size and Sérsic index fits reveal that while there remains evolution in terms of galaxies becoming larger and more concentrated in stellar mass at lower redshifts, the magnitude of the change is significantly smaller than for a mass-selected sample. We also find that changes in size and structure continues at z  〈 1, and is coupled strongly to passivity evolution. We conclude that galaxy structure is driving the quenching of galaxies, such that galaxies become concentrated before they become passive.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-07-02
    Description: Narrow-band HST imaging has resolved the detailed internal structure of the 10 kpc diameter H α+[N  ii ] emission line nebulosity in NGC4696, the central galaxy in the nearby Centaurus cluster, showing that the dusty, molecular, filaments have a width of about 60 pc. Optical morphology and velocity measurements indicate that the filaments are dragged out by the bubbling action of the radio source as part of the active galactic nucleus feedback cycle. Using the drag force we find that the magnetic field in the filaments is in approximate pressure equipartition with the hot gas. The filamentary nature of the cold gas continues inwards, swirling around and within the Bondi accretion radius of the central black hole, revealing the magnetic nature of the gas flows in massive elliptical galaxies. HST imaging resolves the magnetic, dusty, molecular filaments at the centre of the Centaurus cluster to a swirl around and within the Bondi radius.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-05-20
    Description: Connecting galaxies with their descendants (or progenitors) at different redshifts can yield strong constraints on galaxy evolution. Observational studies have historically selected samples of galaxies using a physical quantity, such as stellar mass, either above a constant limit or at a constant cumulative number density. Investigation into the efficacy of these selection methods has not been fully explored. Using a set of four semi-analytical models based on the output of the Millennium Simulation, we find that selecting galaxies at a constant number density (in the range –4.3 〈 log n [Mpc –3 h 3 ] 〈 –3.0) is superior to a constant stellar mass selected sample, although it still has significant limitations. Recovery of the average stellar mass, stellar mass density and average star formation rate is highly dependent on the choice of number density but can all be recovered to within 〈50 per cent at the commonly employed choice of log n [Mpc –3 h 3 ] = –4.0, corresponding to log M h –1  ~ 11.2 at z  = 0, but this increases at lower mass limits. We show that there is a large scatter between the location of a given galaxy in a rank ordering based on stellar mass between different redshifts. We find that the inferred velocity dispersion may be a better tracer of galaxy properties, although further investigation is warranted into simulating this property. Finally, we find that over large redshift ranges selection at a constant number density is more effective in tracing the progenitors of modern galaxies than vice versa.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-06-11
    Description: We explore the redshift evolution of a curious correlation between the star formation properties of central galaxies and their satellites (‘galactic conformity’) at intermediate to high redshift (0.4 〈 z 〈 1.9). Using an extremely deep near-infrared survey, we study the distribution and properties of satellite galaxies with stellar masses, log( M * /M ) 〉 9.7, around central galaxies at the characteristic Schechter function mass, M ~ M *. We fit the radial profiles of satellite number densities with simple power laws, finding slopes in the range –1.1 to –1.4 for mass-selected satellites, and –1.3 to –1.6 for passive satellites. We confirm the tendency for passive satellites to be preferentially located around passive central galaxies at 3 significance and show that it exists to at least z ~ 2. Meanwhile, the quenched fraction of satellites around star-forming galaxies is consistent with field galaxies of equal stellar masses. We find no convincing evidence for a redshift-dependent evolution of these trends. One simple interpretation of these results is that only passive central galaxies occupy an environment that is capable of independently shutting off star formation in satellite galaxies. By examining the satellites of higher stellar mass star-forming galaxies (log( M * /M ) 〉 11), we conclude that the origin of galactic conformity is unlikely to be exclusively due to the host dark matter halo mass. A halo-mass-independent correlation could be established by either formation bias or a more physical connection between central and satellite star formation histories. For the latter, we argue that a star formation (or active galactic nucleus) related outburst event from the central galaxy could establish a hot halo environment which is then capable of quenching both central and satellite galaxies.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-09-19
    Description: Using a sample of 425 nearby brightest cluster galaxies (BCGs) from von der Linden et al., we study the relationship between their internal properties (stellar masses, structural parameters and morphologies) and their environment. More massive BCGs tend to inhabit denser regions and more massive clusters than lower mass BCGs. Furthermore, cDs, which are BCGs with particularly extended envelopes, seem to prefer marginally denser regions and tend to be hosted by more massive haloes than elliptical BCGs. cD and elliptical BCGs show parallel positive correlations between their stellar masses and environmental densities. However, at a fixed environmental density, cDs are, on average, ~40 per cent more massive. Our results, together with the findings of previous studies, suggest an evolutionary link between elliptical and cD BCGs. We suggest that most present-day cDs started their life as ellipticals, which subsequently grew in stellar mass and size due to mergers. In this process, the cD envelope developed. The large scatter in the stellar masses and sizes of the cDs reflects their different merger histories. The growth of the BCGs in mass and size seems to be linked to the hierarchical growth of the structures they inhabit: as the groups and clusters became denser and more massive, the BCGs at their centres also grew. This process is nearing completion since the majority (~60 per cent) of the BCGs in the local Universe have cD morphology. However, the presence of galaxies with intermediate morphological classes (between ellipticals and cDs) suggests that the growth and morphological transformation of some BCGs is still ongoing.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-09-27
    Description: Using a sample of 425 nearby brightest cluster galaxies (BCGs) from von der Linden et al., we study the relationship between their internal properties (stellar masses, structural parameters and morphologies) and their environment. More massive BCGs tend to inhabit denser regions and more massive clusters than lower mass BCGs. Furthermore, cDs, which are BCGs with particularly extended envelopes, seem to prefer marginally denser regions and tend to be hosted by more massive haloes than elliptical BCGs. cD and elliptical BCGs show parallel positive correlations between their stellar masses and environmental densities. However, at a fixed environmental density, cDs are, on average, ~40 per cent more massive. Our results, together with the findings of previous studies, suggest an evolutionary link between elliptical and cD BCGs. We suggest that most present-day cDs started their life as ellipticals, which subsequently grew in stellar mass and size due to mergers. In this process, the cD envelope developed. The large scatter in the stellar masses and sizes of the cDs reflects their different merger histories. The growth of the BCGs in mass and size seems to be linked to the hierarchical growth of the structures they inhabit: as the groups and clusters became denser and more massive, the BCGs at their centres also grew. This process is nearing completion since the majority (~60 per cent) of the BCGs in the local Universe have cD morphology. However, the presence of galaxies with intermediate morphological classes (between ellipticals and cDs) suggests that the growth and morphological transformation of some BCGs is still ongoing.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...