ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Curiosity's primary goal is to explore and quantitatively assess a local region on Mars' surface as a potential habitat for life, past or present. This presentation will discuss what makes a habitable environment with some scientific data from the mars rover.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN10378 , Scripps Institute''s San Diego Mass Analysis Network; Aug 08, 2013; LaJolla, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Sediments of the Yellowknife Bay formation (Gale crater) include the Sheepbed member, a mudstone cut by light-toned veins. Two drill samples, John Klein and Cumberland, were collected and analyzed by the CheMin XRD/XRF instrument and the Sample Analysis at Mars (SAM) evolved gas and isotopic analysis suite of instruments. Drill cuttings were also analyzed by the Alpha Particle X-ray Spectrometer (APXS) for bulk composition. The CheMin XRD analysis shows that the mudstone contains basaltic minerals (Fe-forsterite, augite, pigeonite, plagioclase), as well as Fe-oxide/hydroxides, Fe-sulfides, amorphous materials, and trioctahedral phyllosilicates. SAM evolved gas analysis of higher-temperature OH matches the CheMin XRD estimate of ~20% clay minerals in the mudstone. The light-toned veins contain Ca-sulfates; anhydrite and bassanite are detected by XRD but gypsum is also indicated from Mastcam spectral mapping. These sulfates appear to be almost entirely restricted to late-diagenetic veins. The sulfate content of the mudstone matrix itself is lower than other sediments analyzed on Mars. The presence of phyllosilicates indicates that the activity of water was high during their formation and/or transport and deposition (should they have been detrital). Lack of chlorite places limits on the maximum temperature of alteration (likely 〈100 C). The presence of Ca-sulfates rather than Mg- or Fe-sulfates suggests that the pore water pH was near-neutral and of relatively low ionic strength (although x-ray amorphous Mg-and Fe- sulfates could be present and undetectable by CheMin). The presence of Fe and S in both reduced and oxidized states represents chemical disequilibria that could have been utilized by chemolithoautotrophic biota, if present. When compared to the nearby Rocknest sand shadow mineralogy or the normative mineralogy of Martian soil, both John Klein and Cumberland exhibit a near-absence of olivine and a surplus of magnetite (7-9% of the crystalline component). The magnetite is interpreted as an authigenic product formed when olivine was altered to phyllosilicate. Saponitization of olivine (a process analogous to serpentinization) could have produced H2 in situ. Indeed, early diagenetic hollow nodules ("minibowls") present in the Cumberland mudstone are interpreted by some as forming when gas bubbles accumulated in the unconsolidated mudstone. Lastly, all of these early diagenetic features appear to have been preserved with minimal alteration since their formation, as indicated by the ease of drilling (weak lithification, lack of cementing phases), the presence of 20-30% amorphous material, and the late-stage fracturing with emplacement of calcium sulfate veins and minibowl infills, where they were intersected by veins. A rough estimate of the minimum duration of the lacustrine environment is provided by the minimum thickness of the Sheepbed member. Given 1.5 meters, and applying a mean sediment accumulation rate for lacustrine strata of 1 m/1000 yrs yields a duration of 1,500 years. If the aqueous environments represented by overlying strata are considered, such as Gillespie Lake and Shaler, then this duration increases. The Sheepbed mudstone meets all the requirements of a habitable environment: Aqueous deposition at clement conditions of P, T, pH, Eh and ionic strength, plus the availability of sources of chemical energy.
    Keywords: Exobiology; Lunar and Planetary Science and Exploration
    Type: JSC-CN-30046 , 2013 American Geophysical Union (AGU) Annual Fall Meeting; Dec 09, 2013 - Dec 13, 2013; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected both reduced and oxidized nitrogen-bearing compounds during the pyrolysis of surface materials from three sites at Gale Crater. Preliminary detections of nitrogen species include NO, HCN, ClCN, CH3CN, and TFMA (trifluoro-Nmethyl-acetamide). On Earth, nitrogen is a crucial bio-element, and nitrogen availability controls productivity in many environments. Nitrogen has also recently been detected in the form of CN in inclusions in the Martian meteorite Tissint, and isotopically heavy nitrogen (delta N-15 approx +100per mille) has been measured during stepped combustion experiments in several SNC meteorites. The detection of nitrogen-bearing compounds in Martian regolith would have important implications for the habitability of ancient Mars. However, confirmation of indigenous Martian nitrogen bearing compounds will require ruling out their formation from the terrestrial derivatization reagents (e.g. N-methyl-N-tert-butyldimethylsilyl-trifluoroacetamide, MTBSTFA and dimethylformamide, DMF) carried for SAM's wet chemistry experiment that contribute to the SAM background. The nitrogen species we detect in the SAM solid sample analyses can also be produced during laboratory pyrolysis experiments where these reagents are heated in the presence of perchlorate, a compound that has also been identified by SAM in Mars solid samples. However, this does not preclude a Martian origin for some of these compounds, which are present in nanomolar concentrations in SAM evolved gas analyses. Analysis of SAM data and laboratory breadboard tests are underway to determine whether nitrogen species are present at higher concentrations than can be accounted for by maximum estimates of nitrogen contribution from MTBSTFA and DMF. In addition, methods are currently being developed to use GC Column 6, (functionally similar to a commercial Q-Bond column), to separate and identify unretained compounds such as NO, N2O, and NO2, which are difficult to detect by EGA-MS due to mass interferences at 30, 44 and 46, respectively. Here we present evolved gas analysis-mass spectrometry (EGA-MS) and gas chromatography mass spectrometry (GC-MS) data on the identification and quantification of these nitrogen-bearing compounds, and suggestions for their origins
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-30038 , American Geophysical Union (AGU) Annual Fall Meetiing; Dec 09, 2013 - Dec 13, 2013; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Planetary models suggest that nitrogen was abundant in the early Martian atmosphere as N2 but it was lost by sputtering and photochemical loss to space, impact erosion, and chemical oxidation to nitrates. A nitrogen cycle may exist on Mars where nitrates, produced early in Mars' history, may have been later decomposed back into N2 by the current impact flux. Nitrates are a fundamental source of nitrogen for terrestrial microorganisms, and they have evolved metabolic pathways to perform both oxidation and reduction to drive a complete biological nitrogen cycle. Therefore, the characterization of nitrogen in Martian soils is important to assess habitability of the Martian environment, particularly with respect to the presence of nitrates. The only previous mission that was designed to search for soil nitrates was the Phoenix mission but N-containing species were not detected by TEGA or the MECA WCL. Nitrates have been tentatively identified in Nakhla meteorites, and if nitrogen was oxidized on Mars, this has important implications for the habitability potential of Mars. Here we report the results from the Sample Analysis at Mars (SAM) instrument suite aboard the Curiosity rover during the first year of surface operations in Gale Crater. Samples from the Rocknest aeolian deposit and sedimentary rocks (John Klein) were heated to approx 835degC under helium flow and the evolved gases were analyzed by MS and GC-MS. Two and possibly three peaks may be associated with the release of m/z 30 at temperatures ranging from 180degC to 500degC. M/z 30 has been tentatively identified as NO; other plausible contributions include CH2O and an isotopologue of CO, 12C18O. NO, CH2O, and CO may be reaction products of reagents (MTBSTFA/DMF) carried from Earth for the wet chemical derivatization experiments with SAM and/or derived from indigenous soil nitrogenated organics. Laboratory analyses indicate that it is also possible that 〈550degC evolved NO is produced via reaction of HCl with nitrates arising from the decomposition of perchlorates. All sources of m/z 30 whether it be martian or terrestrial will be considered and their implications for Mars will be discussed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-30040 , American Geophysical Union (AGU) Annual Fall Meeting; Dec 09, 2013 - Dec 13, 2013; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The Sample Analysis at Mars (SAM) instrument suite is the largest scientific payload on the Mars Science Laboratory (MSL) Curiosity rover, which landed in Mars Gale Crater in August 2012. As a miniature geochemical laboratory, SAM is well-equipped to address multiple aspects of MSLs primary science goal, characterizing the potential past or present habitability of Gale Crater. Atmospheric measurements support this goal through compositional investigations relevant to martian climate evolution. SAM instruments include a quadrupole mass spectrometer, a tunable laser spectrometer, and a gas chromatograph that are used to analyze martian atmospheric gases as well as volatiles released by pyrolysis of solid surface materials (Mahaffy et al., 2012). This report presents analytical methods for retrieving the chemical and isotopic composition of Mars atmosphere from measurements obtained with SAMs quadrupole mass spectrometer. It provides empirical calibration constants for computing volume mixing ratios of the most abundant atmospheric species and analytical functions to correct for instrument artifacts and to characterize measurement uncertainties. Finally, we discuss differences in volume mixing ratios of the martian atmosphere as determined by SAM (Mahaffy et al., 2013) and Viking (Owen et al., 1977, Oyama and Berdahl, 1977) from an analytical perspective. Although the focus of this paper is atmospheric observations, much of the material concerning corrections for instrumental effects also applies to reduction of data acquired with SAM from analysis of solid samples.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN21476 , Planetary and Space Science (ISSN 0032-0633); 96; 99-113
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...