ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Exotoxin A production in Pseudomonas aeruginosa is a complicated and highly regulated process that involves several genes. In this report, we describe the isolation of a new toxA regulatory gene (ptxR) which affects exotoxin A production in P. aeruginosa. In an iron-deficient medium, the presence of a plasmid carrying ptxR in P. aeruginosa PAO1 resulted in a four- to fivefold increase in exotoxin A synthesis. No effect was observed on the levels of elastase, phospholipase C, exoenzyme S, and alkaline protease. Using subcloning and complementation experiments, ptxR was localized to a 2.1 kb KpnI–BglII fragment. Nucleotide sequence analysis revealed the presence of an open reading frame which encodes a 34.97 kDa protein (PtxR). The size of the predicted PtxR compares closely with the 34 kDa PtxR that was synthesized in Escherichia coli using the T7 expression system. The deduced amino acid sequence of PtxR is homologous to that of several members of the LysR family of transcriptional activators. The amino-terminus region of PtxR contains a putative helix-turn-helix DNA-binding motif. Specific ptxR-deletion mutants in P. aeruginosa strains PAO1 and PA103 were constructed. In comparison with their parent strains, both mutants showed a significant reduction in the level of exotoxin A activity. However, upon extensive subculturing, the level of exotoxin A produced by the PAO1::ptxR mutant was similar to that of PAO1. Transcriptional studies, using both toxA–lacZ fusion and RNA analysis, confirmed that ptxR increases toxA and regA transcription. These results suggest that ptxR regulates (through regA) exotoxin A production at the transcriptional level.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Publishing Ltd
    Molecular microbiology 27 (1998), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Multidrug-resistant strains of Vibrio cholerae (the causative agent of the diarrhoeal disease cholera) have recently been described. In an attempt to identify a homologue of the Escherichia coli TolC in V. cholerae, we isolated a DNA fragment (pVC) that enabled an E. coli tolC mutant to grow in the presence of 0.05% deoxycholate (DOC). However, other TolC defects were not complemented. Nucleotide sequence analysis of this fragment revealed the presence of two open reading frames (ORF1 and ORF2) separated by 9 bp and encoding 42.4 and 55.8 kDa proteins respectively. The translational products of these two ORFs correlated closely with the molecular weights of the predicted proteins. The deduced amino acid sequences of ORF1 and ORF2 showed a high degree of similarity with conserved regions of the E. coli efflux pump proteins, EmrA and EmrB. The presence of pVC2 within the E. coli efflux pump mutants defective in either the emrAB or the acrAB genes provided the mutants with resistance against several antibiotics. A V. cholerae isogenic mutant defective in ORF2 was constructed by gene replacement. Characterization of this mutant has shown it to be more sensitive to CCCP, PMA, PCP, nalidixic acid and DOC than the parent strain. These results suggest that ORF1 and ORF2 constitute an operon encoding two components of a putative multidrug resistance pump in V. cholerae. In addition, the presence of both structural and functional similarities between VceAB and EmrAB suggests that VceAB is a homologue of EmrAB.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2001-11-01
    Print ISSN: 1043-4666
    Electronic ISSN: 1096-0023
    Topics: Biology , Medicine
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...