ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-05-29
    Description: Existing models for large-magnitude, right-lateral slip on the San Gregorio–Hosgri fault system imply much more deformation of the onshore block in the Santa Maria basin than is supported by geologic data. This problem is resolved by a model in which dextral slip on this fault system increases gradually from 0–10 km near Point Arguello to ~150 km at Cape San Martin, but such a model requires abandoning the cross-fault tie between Point Sal and Point Piedras Blancas, which requires 90–100 km of right-lateral slip on the southern Hosgri fault. We collected stratigraphic and detrital zircon data from Miocene clastic rocks overlying Jurassic basement at both localities to determine if either section contained unique characteristics that could establish how far apart they were in the early Miocene. Our data indicate that these basins formed in the early Miocene during a period of widespread transtensional basin formation in the central Coast Ranges, and they filled with sediment derived from nearby pre-Cenozoic basement rocks. Although detrital zircon data do not indicate a unique source component in either section, they establish the maximum depositional age of the previously undated Point Piedras Blancas section to be 18 Ma. We also show that detrital zircon trace-element data can be used to discriminate between zircons of oceanic crust and arc affinity of the same age, a potentially useful tool in future studies of the California Coast Ranges. Overall, we find no characteristics in the stratigraphy and provenance of the Point Sal and Point Piedras Blancas sections that are sufficiently unique to prove whether they were far apart or close together in the early Miocene, making them of questionable utility as piercing points.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-02-03
    Description: Mountains in the U.S. Basin and Range Province are similar in form, yet they have different histories of deformation and uplift. Unfortunately, chronicling fault slip with techniques like thermochronology and geodetics can still leave sizable, yet potentially important gaps at Pliocene–Quaternary (~10 5 –10 6 yr) time scales. Here, we combine existing geochronology with new geomorphic observations and approaches to investigate the Miocene to Quaternary slip history of active normal faults that are exhuming three footwall ranges in northwestern Nevada: the Pine Forest Range, the Jackson Mountains, and the Santa Rosa Range. We use the National Elevation Dataset (10 m) digital elevation model (DEM) to measure bedrock river profiles and hillslope gradients from these ranges. We observe a prominent suite of channel convexities (knickpoints) that segment the channels into upper reaches with low steepness (mean k sn = ~182; ref = 0.51) and lower, fault-proximal reaches with high steepness (mean k sn = ~361), with a concomitant increase in hillslope angles of ~6°–9°. Geologic maps and field-based proxies for rock strength allow us to rule out static causes for the knickpoints and interpret them as transient features triggered by a drop in base level that created ~20% of the existing relief (~220 m of ~1050 m total). We then constrain the timing of base-level change using paleochannel profile reconstructions, catchment-scale volumetric erosion fluxes, and a stream-power–based knickpoint celerity (migration) model. Low-temperature thermochronology data show that faulting began at ca. 11–12 Ma, yet our results estimate knickpoint initiation began in the last 5 Ma and possibly as recently as 0.1 Ma with reasonable migration rates of 0.5–2 mm/yr. We interpret the collective results to be evidence for enhanced Pliocene–Quaternary fault slip that may be related to tectonic reorganization in the American West, although we cannot rule out climate as a contributing mechanism. We propose that similar studies, which remain remarkably rare across the region, be used to further test how robust this Plio–Quaternary landscape signal may be throughout the Great Basin.
    Print ISSN: 1941-8264
    Electronic ISSN: 1947-4253
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-08-28
    Description: The northern Shoshone and Toiyabe Ranges in north-central Nevada expose numerous areas of mineralized Paleozoic rock, including major Carlin-type gold deposits at Pipeline and Cortez. Paleozoic rocks in these areas were previously interpreted to have undergone negligible postmineralization extension and tilting, but here we present new data that suggest major post-Eocene extension along west-dipping normal faults. Tertiary rocks in the northern Shoshone Range crop out in two W-NW–trending belts that locally overlie and intrude highly deformed Lower Paleozoic rocks of the Roberts Mountains allochthon. Tertiary exposures in the more extensive, northern belt were interpreted as subvertical breccia pipes (intrusions), but new field data indicate that these "pipes" consist of a 35.8 Ma densely welded dacitic ash flow tuff (informally named the tuff of Mount Lewis) interbedded with sandstones and coarse volcaniclastic deposits. Both tuff and sedimentary rocks strike N-S and dip 30° to 70° E; the steeply dipping compaction foliation in the tuffs was interpreted as subvertical flow foliation in breccia pipes. The southern belt along Mill Creek, previously mapped as undivided welded tuff, includes the tuff of Cove mine (34.4 Ma) and unit B of the Bates Mountain Tuff (30.6 Ma). These tuffs dip 30° to 50° east, suggesting that their west-dipping contacts with underlying Paleozoic rocks (previously mapped as depositional) are normal faults. Tertiary rocks in both belts were deposited on Paleozoic basement and none appear to be breccia pipes. We infer that their present east tilt is due to extension on west-dipping normal faults. Some of these faults may be the northern strands of middle Miocene (ca. 16 Ma) faults that cut and tilted the 34.0 Ma Caetano caldera ~40° east in the central Shoshone Range (〈5 km south of Mill Creek), but further mapping is necessary to trace the faults through the highly deformed Paleozoic rocks that surround the isolated Tertiary outcrops. Significant post-Eocene extensional faulting in the northern Shoshone Range may have important implications for both the structure of the Roberts Mountains allochthon and the exposure of potentially mineralized rocks in its lower plate, both of which were likely east-tilted and repeated by west-dipping faults together with overlying Tertiary rocks.
    Print ISSN: 0361-0128
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-10-25
    Description: Late Cenozoic faulting and large-magnitude extension in the Great Basin of the western USA has created locally deep windows into the upper crust, permitting direct study of volcanic and plutonic rocks within individual calderas. The Caetano caldera in north–central Nevada, formed during the mid-Tertiary ignimbrite flare-up, offers one of the best exposed and most complete records of caldera magmatism. Integrating whole-rock geochemistry, mineral chemistry, isotope geochemistry and geochronology with field studies and geologic mapping, we define the petrologic evolution of the magmatic system that sourced the 〉1100 km 3 Caetano Tuff. The intra-caldera Caetano Tuff is up to ~5 km thick, composed of crystal-rich (30–45 vol. %), high-silica rhyolite, overlain by a smaller volume of comparably crystal-rich, low-silica rhyolite. It defies classification as either a monotonous intermediate or crystal-poor zoned rhyolite, as commonly ascribed to ignimbrite eruptions. Crystallization modeling based on the observed mineralogy and major and trace element geochemistry demonstrates that the compositional zonation can be explained by liquid–cumulate evolution in the Caetano Tuff magma chamber, with the more evolved lower Caetano Tuff consisting of extracted liquids that continued to crystallize and mix in the upper part of the chamber following segregation from a cumulate-rich, and more heterogeneous, source mush. The latter is represented in the caldera stratigraphy by the less evolved upper Caetano Tuff. Whole-rock major, trace and rare earth element geochemistry, modal mineralogy and mineral chemistry, O, Sr, Nd and Pb isotope geochemistry, sanidine Ar–Ar geochronology, and zircon U–Pb geochronology and trace element geochemistry provide robust evidence that the voluminous caldera intrusions (Carico Lake pluton and Redrock Canyon porphyry) are genetically equivalent to the least evolved Caetano Tuff and formed from magma that remained in the lower chamber after ignimbrite eruption and caldera collapse. Thus, the Caetano Tuff contradicts models for the mutually exclusive origins of voluminous volcanic and plutonic magmas in the upper crust. Crystal-scale O isotope data indicate that the Caetano Tuff is one of the most 18 O-enriched rhyolites in the Great Basin ( 18 O magma = 10·2 ± 0·2), supporting anatexis of local metasedimentary basement crust. Metapelite xenoliths in the Carico Lake pluton and ubiquitous xenocrystic zircons in the Caetano Tuff provide constraints for the anatexis process; these data point to shallow (〈15 km) dehydration melting of a protolith similar to the Proterozoic McCoy Creek Group siliciclastic sediments in eastern Nevada, projected beneath Caetano in fault-stacked shelf sediments that were thickened during Mesozoic crustal shortening. Mean zircon U–Pb ages for different stratigraphic levels of the intra-caldera Caetano Tuff are 34·2–34·5 Ma, 0·2–0·5 Myr older than the caldera sanidine 40 Ar/ 39 Ar age of 34·00 ± 0·03 Ma, documenting protracted duration of assembly and homogenization of isotopically diverse upper crustal melts, followed by crystallization and zonation to generate the Caetano Tuff magma chamber. Sanidine rims in the least evolved Caetano Tuff and in the Carico Lake pluton and Redrock Canyon porphyry have sharply zoned Ba domains that point to crystal growth during magmatic recharge events. The recharge magma is inferred to have been compositionally similar to the Caetano Tuff magma, with increased Ba resulting from remelting of Ba-rich sanidine cumulates. Mush reactivation to generate the Caetano Tuff eruption was sufficiently rapid to preserve compositional gradients in the intracaldera ignimbrite, calling into question models that predict homogeneity as a prerequisite for remobilizing crystal-rich ignimbrite magmas.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-01-30
    Description: The northern Nevada rift is a prominent mafic dike swarm and magnetic anomaly in north-central Nevada inferred to record the Middle Miocene (16.5–15.0 Ma) extension direction in the northern Basin and Range province in the western United States. From the 245°–250° rift direction, Basin and Range extension is inferred to have shifted 45° clockwise to a modern direction of 290°–300° during the late Miocene. The region surrounding the northern Nevada rift was actively extending while the rift formed, and these domains are all characterized by extension oriented 280°–300°. This direction is distinctly different from the rift direction and nearly identical to the modern Basin and Range direction. Although the rate, structural style, and distribution of Basin and Range extension appear to have undergone a significant change in the late Miocene (ca. 10 Ma), the overall spreading direction does not. Middle Miocene extension was directed perpendicular to the axis of the thickest crust formed during Mesozoic shortening and this orientation may reflect gravitational collapse of this thick crust. Orientation of northern Nevada rift dikes may reflect a short-lived regional stress field related to the onset of Yellowstone hotspot volcanism.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-01-25
    Description: Estimates of the dip, depth extent, and amount of cumulative displacement along the major faults in the central California Coast Ranges are controversial. We use detailed aeromagnetic data to estimate these parameters for the San Gregorio–San Simeon–Hosgri and other faults. The recently acquired aeromagnetic data provide an areally consistent data set that crosses the onshore-offshore transition without disruption, which is particularly important for the mostly offshore San Gregorio–San Simeon–Hosgri fault. Our modeling, constrained by exposed geology and in some cases, drill-hole and seismic-reflection data, indicates that the San Gregorio–San Simeon–Hosgri and Reliz-Rinconada faults dip steeply throughout the seismogenic crust. Deviations from steep dips may result from local fault interactions, transfer of slip between faults, or overprinting by transpression since the late Miocene. Given that such faults are consistent with predominantly strike-slip displacement, we correlate geophysical anomalies offset by these faults to estimate cumulative displacements. We find a northward increase in right-lateral displacement along the San Gregorio–San Simeon–Hosgri fault that is mimicked by Quaternary slip rates. Although overall slip rates have decreased over the lifetime of the fault, the pattern of slip has not changed. Northward increase in right-lateral displacement is balanced in part by slip added by faults, such as the Reliz-Rinconada, Oceanic–West Huasna, and (speculatively) Santa Ynez River faults to the east.
    Print ISSN: 1941-8264
    Electronic ISSN: 1947-4253
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-05-15
    Print ISSN: 1050-2947
    Electronic ISSN: 1094-1622
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-09-15
    Print ISSN: 1050-2947
    Electronic ISSN: 1094-1622
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-10-16
    Print ISSN: 2469-9950
    Electronic ISSN: 2469-9969
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-06
    Print ISSN: 0953-4075
    Electronic ISSN: 1361-6455
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...