ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Keywords: Biotic communities. ; Biodiversity. ; Freshwater ecology. ; Marine ecology. ; Climatology. ; Physical geography. ; Botanical chemistry. ; Ecosystems. ; Biodiversity. ; Freshwater and Marine Ecology. ; Climate Sciences. ; Physical Geography. ; Plant Biochemistry.
    Description / Table of Contents: Preface -- The marine physical environment during the Polar Night -- Light in the Polar Night -- Marine micro- and macroalgae in the Polar Night -- Zooplankton in the Polar Night -- Benthic communities in the Polar Night -- Fish ecology in the Polar Night -- Biological clocks and rhythms in polar organisms -- Sensor carrying platforms -- Operative habitat mapping and monitoring in the Polar Night -- The Polar Night exhibition: Life and light at the dead of night -- Index.
    Abstract: Until recently, the prevailing view of marine life at high latitudes has been that organisms enter a general resting state during the dark Polar Night and that the system only awakens with the return of the sun. Recent research, however, with coordinated, multidisciplinary field campaigns based on the high Arctic Archipelago of Svalbard, have provided a radical new perspective. Instead of a system in dormancy, a new perspective of a system in full operation and with high levels of activity across all major phyla is emerging. Examples of such activities and processes include: Active marine organisms at sea surface, water column and the sea-floor. At surface we find active foraging in seabirds and fish, in the water column we find a high biodiversity and activity of zooplankton and larvae such as active light induced synchronized diurnal vertical migration, and at seafloor there is a high biodiversity in benthic animals and macroalgae. The Polar Night is a period for reproduction in many benthic and pelagic taxa, mass occurrence of ghost shrimps (Caprellides), high abundance of Ctenophores, physiological evidence of micro- and macroalgal cells that are ready to utilize the first rays of light when they appear, deep water fishes found at water surface in the Polar night, and continuous growth of bivalves throughout the winter. These findings not only begin to shape a new paradigm for marine winter ecology in the high Arctic, but also provide conclusive evidence for a top-down controlled system in which primary production levels are close to zero. In an era of environmental change that is accelerated at high latitudes, we believe that this new insight is likely to strongly impact how the scientific community views the high latitude marine ecosystem. Despite the overwhelming darkness, the main environmental variable affecting marine organisms in the Polar Night is in fact light. The light regime during the Polar Night is unique with respect to light intensity, spectral composition of light and photoperiod. .
    Type of Medium: Online Resource
    Pages: XI, 375 p. 133 illus., 116 illus. in color. , online resource.
    Edition: 1st ed. 2020.
    ISBN: 9783030332082
    Series Statement: Advances in Polar Ecology, 4
    DDC: 577
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: 9783030332082 (e-book)
    Description / Table of Contents: Until recently, the prevailing view of marine life at high latitudes has been that organisms enter a general resting state during the dark Polar Night and that the system only awakens with the return of the sun. Recent research, however, with coordinated, multidisciplinary field campaigns based on the high Arctic Archipelago of Svalbard, have provided a radical new perspective. Instead of a system in dormancy, a new perspective of a system in full operation and with high levels of activity across all major phyla is emerging. Examples of such activities and processes include: Active marine organisms at sea surface, water column and the sea-floor. At surface we find active foraging in seabirds and fish, in the water column we find a high biodiversity and activity of zooplankton and larvae such as active light induced synchronized diurnal vertical migration, and at seafloor there is a high biodiversity in benthic animals and macroalgae. The Polar Night is a period for reproduction in many benthic and pelagic taxa, mass occurrence of ghost shrimps (Caprellides), high abundance of Ctenophores, physiological evidence of micro- and macroalgal cells that are ready to utilize the first rays of light when they appear, deep water fishes found at water surface in the Polar night, and continuous growth of bivalves throughout the winter. These findings not only begin to shape a new paradigm for marine winter ecology in the high Arctic, but also provide conclusive evidence for a top-down controlled system in which primary production levels are close to zero. In an era of environmental change that is accelerated at high latitudes, we believe that this new insight is likely to strongly impact how the scientific community views the high latitude marine ecosystem. Despite the overwhelming darkness, the main environmental variable affecting marine organisms in the Polar Night is in fact light. The light regime during the Polar Night is unique with respect to light intensity, spectral composition of light and photoperiod. .
    Type of Medium: 12
    Pages: 1 Online-Ressource (XI, 375 Seiten) , Illustrationen, Diagramme, Karten (farbig)
    ISBN: 9783030332082 , 978-3-030-33208-2
    ISSN: 2468-5720 , 2468-5712
    Series Statement: Advances in polar ecology volume 4
    Language: English
    Note: Contents 1 Introduction / Jørgen Berge, Geir Johnsen, and Jonathan H. Cohen 2 The Marine Physical Environment During the Polar Night / Finlo Cottier and Marie Porter 3 Light in the Polar Night / Jonathan H. Cohen, Jørgen Berge, Mark A. Moline, Geir Johnsen, and Artur P. Zolich 4 Marine Micro- and Macroalgae in the Polar Night / Geir Johnsen, Eva Leu, and Rolf Gradinger 5 Zooplankton in the Polar Night / Jørgen Berge, Malin Daase, Laura Hobbs, Stig Falk-Petersen, Gerald Darnis, and Janne E. Søreide 6 Benthic Communities in the Polar Night / Paul E. Renaud, William G. Ambrose Jr., and Jan Marcin Węsławski 7 Fish Ecology During the Polar Night / Maxime Geoffroy and Pierre Priou 8 Biological Clocks and Rhythms in Polar Organisms / Kim S. Last, N. Sören Häfker, Vicki J. Hendrick, Bettina Meyer, Damien Tran, and Fabio Piccolin 9 Sensor-Carrying Platforms / Asgeir J. Sørensen, Martin Ludvigsen, Petter Norgren, Øyvind Ødegård, and Finlo Cottier 10 Operative Habitat Mapping and Monitoring in the Polar Night / Geir Johnsen, Aksel A. Mogstad, Jørgen Berge, and Jonathan H. Cohen 11 Life and Light at the Dead of Night / Jørgen Berge and Geir Johnsen Index
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-15
    Description: Exposure to high pCO2 or low pH alters sensation and behaviour in many marine animals. We show that crab larvae lose their ability to detect and/or process predator kairomones after exposure to low pH over a time scale relevant to diel pH cycles in coastal environments. Previous work suggests that acidification affects sensation and behaviour through altered neural function, specifically the action of gama-aminobutyric acid (GABA), because a GABA antagonist, gabazine, restores the original behaviour. Here, however, gabazine resulted in a loss of kairomone detection/processing, regardless of pH. Our results also suggest that GABAergic signalling is necessary for kairomone identification in these larvae. Hence, the mechanism for the observed pH effect varies from the original GABA hypothesis. Furthermore, we suggest that this pH effect is adaptive under diel-cycling pH.
    Keywords: Alkalinity, total; Alkalinity, total, standard error; Animalia; Aragonite saturation state; Arthropoda; Behaviour; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard error; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Experiment duration; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Hemigrapsus sanguineus; Irradiance; Laboratory experiment; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Other; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; Pelagos; Percentage; pH; pH, standard error; Registration number of species; Replicate; Salinity; Single species; Species; Temperate; Temperature, water; Treatment; Type; Uniform resource locator/link to reference; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 8188 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Springer Nature Switzerland AG
    In:  EPIC3The ecosystem of Kongsfjorden, Svalbard, Advances in Polar Ecology 2, Cham, Springer Nature Switzerland AG, 36 p., pp. 137-172, ISBN: 978-3-319-46423-7
    Publication Date: 2020-03-05
    Description: Due to its Arctic location at 79°N, Kongsfjorden in Svalbard experiences strong seasonality in light climate, changing from polar night to midnight sun. Sea ice conditions and the optical properties of seawater further modify the amount and the spectral composition of solar radiation penetrating into the water column, thus defining the underwater light climate in Kongsfjorden. Light represents one of the major shaping factors for the entire marine ecosystem. A number of studies focusing on implications of the underwater light for marine organisms have beenconducted in Kongsfjorden, generating diverse datasets on seawater optical properties, scattered over time and space. This review synthesizes the fragmentary information available from the literature as well as presenting some unpublished data, and discusses the underwater light climate and its main controlling factors in Kongsfjorden. Furthermore, we provide a short synopsis about the relevance of light for different components of an Arctic marine ecosystem, exemplified by studies carried out in Kongsfjorden. Due to its year-round accessibility and its high-Arctic location, Kongsfjorden has become a prime fjord for studying how the strong seasonal changes in light availability, ranging from polar night to midnight sun, affect marine life with respect to primary production, behavioural aspects and synchronization of growth and reproduction.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-17
    Description: The current understanding of Arctic ecosystems is deeply rooted in the classical view of a bottom-up controlled system with strong physical forcing and seasonality in primary-production regimes. Consequently, the Arctic polar night is commonly disregarded as a time of year when biological activities are reduced to a minimum due to a reduced food supply. Here, based upon a multidisciplinary ecosystem-scale study from the polar night at 79°N, we present an entirely different view. Instead of an ecosystem that has entered a resting state, we document a system with high activity levels and biological interactions across most trophic levels. In some habitats, biological diversity and presence of juvenile stages were elevated in winter months compared to the more productive and sunlit periods. Ultimately, our results suggest a different perspective regarding ecosystem function that will be of importance for future environmental management and decision making, especially at a time when Arctic regions are experiencing accelerated environmental change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Communications Biology, Springer Nature, 5(1), pp. 562-, ISSN: 2399-3642
    Publication Date: 2024-05-10
    Description: Animal behavior in space and time is structured by the perceived day/night cycle. However, this is modified by the animals’ own movement within its habitat, creating a realized diel light niche (RDLN). To understand the RDLN, we investigated the light as experienced by zooplankton undergoing synchronized diel vertical migration (DVM) in an Arctic fjord around the spring equinox. We reveal a highly dampened light cycle with diel changes being about two orders of magnitude smaller compared to the surface or a static depth. The RDLN is further characterized by unique wavelength-specific irradiance cycles. We discuss the relevance of RDLNs for animal adaptations and interactions, as well as implications for circadian clock entrainment in the wild and laboratory.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
  • 9
    Publication Date: 2014-01-09
    Print ISSN: 0007-4861
    Electronic ISSN: 1432-0800
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-07-22
    Print ISSN: 1616-7341
    Electronic ISSN: 1616-7228
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...