ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-02-01
    Print ISSN: 0273-1177
    Electronic ISSN: 1879-1948
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-11
    Description: This paper describes the optics design and field-of view (FOV) calibration for five radiometers covering 114-660 GHz which share a common antenna in the Microwave Limb Sounder instrument on the National Aeronautics and Space Administration's Aura satellite. Details of near-field pattern measurements are presented. Estimated systematic scaling uncertainties (3/spl sigma/) on calibrated limb emissions, due to FOV calibration uncertainties, are below 0.4%. 3/spl sigma/ uncertainties in beamwidth and relative pointing of radiometer boresights are 0.006A(deg) and 0.003A(deg) , respectively. The uncertainty in modeled instrument response, due to the scan dependence of FOV patterns, is less than +/- 0.24 K equivalent blackbody temperature. Refinements to the calibration using in-flight data are presented.
    Keywords: Optics
    Type: IEEE Transactions on Geoscience and Remote Sensing; Volume 44; Issue 5; 1166-1181
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-11
    Description: The Earth Observing System Microwave Limb Sounder measures several atmospheric chemical species (OH, HO2, H2O, O3, HCl, ClO, HOCl, BrO, HNO3, N2O, CO, HCN, CH3CN, volcanic SO2), cloud ice, temperature, and geopotential height to improve our understanding of stratospheric ozone chemistry, the interaction of composition and climate, and pollution in the upper troposphere. All measurements are made simultaneously and continuously, during both day and night. The instrument uses heterodyne radiometers that observe thermal emission from the atmospheric limb in broad spectral regions centered near 118, 190, 240, and 640 GHz, and 2.5 THz. It was launched July 15, 2004 on the National Aeronautics and Space Administration's Aura satellite and started full-up science operations on August 13, 2004. An atmospheric limb scan and radiometric calibration for all bands are performed routinely every 25 s. Vertical profiles are retrieved every 165 km along the suborbital track, covering 82 S to 82 N latitudes on each orbit. Instrument performance to date has been excellent; data have been made publicly available; and initial science results have been obtained.
    Keywords: Earth Resources and Remote Sensing
    Type: IEEE Transactions on Geoscience and Remote Sensing (ISSN 0196-2892); Volume 44; No. 5; 1075-1092
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The Scanning Microwave Limb Sounder (SMLS) is a space-borne heterodyne radiometer which will measure pressure, temperature and atmospheric constituents from thermal emission in [180,680] GHz. SMLS, planned for the NRC Decadal Survey's Global Atmospheric Composition Mission, uses a novel toric Cassegrain antenna to perform both elevation and azimuth scanning. This provides better horizontal and temporal resolution and coverage than were possible with elevation-only scanning in the two previous MLS satellite instruments. SMLS is diffraction-limited in the vertical plane but highly astigmatic in the horizontal (beam aspect ratio approx. 1:20). Nadir symmetry ensures that beam shape is nearly invariant over plus or minus 65 deg azimuth. A low-noise receiver FOV is swept over the reflector system by a small azimuth-scanning mirror. We describe the fabrication and thermal-stability test of a composite demonstration primary reflector, having full 4m height and 1/3 the width planned for flight. Using finite-element models of reflectors and structure, we evaluate thermal deformations and optical performance for 4 orbital environments and isothermal soak. We compare deformations with photogrammetric measurements made during soak tests in a chamber. The test temperature range exceeds predicted orbital ranges by large factors, implying in-orbit thermal stability of 0.21 micron rms (root mean square)/C, which meets SMLS requirements.
    Keywords: Structural Mechanics; Instrumentation and Photography
    Type: SPIE Optics + Photonics 2011 Conference; Aug 20, 2011 - Aug 25, 2011; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: This paper discusses the current status of the MLS instrument which now continuously provides data to produce global maps of targeted chemical species as well as temperature, cloud ice, and gravity wave activity. Performance trends are assessed with respect to characterization during initial on-orbit activiation of the instrument, and with data from ground test verification prior to launch.
    Type: International Society for Optical Engineering (SPIE) Optics and Photonics; Jul 31, 2005 - Aug 04, 2005; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Optics; Fluid Mechanics and Thermodynamics
    Type: SPIE Optics + Photonics 2011; Aug 20, 2011 - Aug 25, 2011; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: Thermal-emissivity properties improved, and focal length adjusted. Experiments show gentle blasting with glass beads produces beneficial changes in macroscopic surface shapes and in microscopic surface features of lightweight microwave reflectors made of thin metal reflective surfaces on deformable substrates of aluminum honeycomb.
    Keywords: FABRICATION TECHNOLOGY
    Type: NPO-16898 , NASA Tech Briefs (ISSN 0145-319X); 11; 9; P. 101
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: This software is an improvement on Version 2, which was described in EOS MLS Level 1B Data Processing, Version 2.2, NASA Tech Briefs, Vol. 33, No. 5 (May 2009), p. 34. It accepts the EOS MLS Level 0 science/engineering data, and the EOS Aura spacecraft ephemeris/attitude data, and produces calibrated instrument radiances and associated engineering and diagnostic data. This version makes the code more robust, improves calibration, provides more diagnostics outputs, defines the Galactic core more finely, and fixes the equator crossing. The Level 1 processing software manages several different tasks. It qualifies each data quantity using instrument configuration and checksum data, as well as data transmission quality flags. Statistical tests are applied for data quality and reasonableness. The instrument engineering data (e.g., voltages, currents, temperatures, and encoder angles) is calibrated by the software, and the filter channel space reference measurements are interpolated onto the times of each limb measurement with the interpolates being differenced from the measurements. Filter channel calibration target measurements are interpolated onto the times of each limb measurement, and are used to compute radiometric gain. The total signal power is determined and analyzed by each digital autocorrelator spectrometer (DACS) during each data integration. The software converts each DACS data integration from an autocorrelation measurement in the time domain into a spectral measurement in the frequency domain, and estimates separately the spectrally, smoothly varying and spectrally averaged components of the limb port signal arising from antenna emission and scattering effects. Limb radiances are also calibrated.
    Keywords: Man/System Technology and Life Support
    Type: NPO-47219 , NASA Tech Briefs, June 2011; 13-14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The Microwave Limb Sounder instrument was launched aboard NASA's EOS AURA satellite in July, 2004. The overall scientific objectives for MLS are to measure temperature, pressure, and several important chemical species in the upper troposphere and stratosphere relevant to ozone processes and climate change. MLS consists of a suite of radiometers designed to operate from 11 8 GHz to 2.5 THz, with two antennas (one for 2.5 THz, the other for the lower frequencies) that scan vertically through the atmospheric limb, and spectrometers with spectral resolution of 6 MHz at spectral line centers. This paper describes the on-orbit commissioning the MLS instrument which includes activation and engineering functional verifications and calibrations.
    Keywords: Space Sciences (General)
    Type: Earth Observing Systems X; Jul 01, 2005 - Aug 02, 2005; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The Scanning Microwave Limb Sounder (SMLS) is a space-borne heterodyne radiometer which will measure pressure, temperature and atmospheric constituents from thermal emission between 180 and 680 GHz. SMLS, planned for the Global Atmospheric Composition Mission of the NRC Decadal Survey, uses a novel toric Cassegrain antenna to perform both elevation and azimuth scanning. These provide better horizontal and temporal resolution and coverage than were possible with elevation-only scanning at typical Low-Earth orbit spacing in the two previous MLS satellite instruments. Development of the SMLS antenna was the focus of a 2006 Small Business Innovative Research (SBIR) program whose phase II culminated in the fabrication and thermal stability testing of a composite demonstration model of the SMLS primary reflector. This reflector has the full 4m height and 1/3 the width planned for flight. An Instrument Incubator Program (IIP) titled "A deployable 4 Meter 180 to 680 GHz antenna for the Scanning Microwave Limb Sounder" continues development of the SMLS antenna with the study of 5 topics: 1) detailed mathematical modeling of the antenna patterns from which we simulate geophysical parameter retrievals in order to establish FOV performance requirements; 2) thorough correlation of finite element model predictions with measurements made on the SBIR reflector. We will again measure deformations of this reflector, under more flight-like thermal gradients, using higher precision metrology techniques available in a new large-aperture facility at JPL; 3) fabrication of a full-width primary reflector whose asbuilt surface figure will better meet the figure requirements of SMLS than did the SBIR reflector; 4) integration of the primary with other reflectors, and with residual front ends built in a 2007 IIP, in a breadboard antenna; and finally 5) RF testing of the breadboard on a Near Field Range at JPL. We report on significant progress in 3 areas of the current IIP: development of the mathematical model to predict SMLS antenna patterns and their application in a preliminary set of geophysical retrievals; the correlation between surface deformation predicted by finite element models and measurement in the 2009 isothermal stability tests of the SBIR, with implications for the thermal gradient testing to be performed at JPL; and aspects of the conceptual design of the full-width primary reflector to be fabricated and tested in the 2nd and 3rd years of the IIP.
    Keywords: Instrumentation and Photography
    Type: 2011 Earth Science Technology Forum (ESTF2011); Jun 21, 2011 - Jun 23, 2011; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...