ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Landscape ecology 3 (1989), S. 19-27 
    ISSN: 1572-9761
    Keywords: gap dynamics ; grassland ; disturbance ; succession ; blue grama ; Bouteloua ; simulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We developed a spatially-explicit gap dynamics simulation model to evaluate the effects of disturbances at the scale of a landscape for a semiarid grassland in northcentral Colorado, USA. The model simulates the establishment, growth, and death of individual plants on a small plot through time at an annual time step. Long-term successional dynamics on individual plots (single gaps) and on a landscape composed of a grid of plots were evaluated. Landscapes were simulated as either a collection of independent plots or as a collection of interacting plots where processes on one plot were influenced by processes on adjacent plots. Because we were interested in the recovery of the dominant plant species, the perennial grass blue grama (Bouteloua gracilis (H.B.K.) Lag. ex Griffiths) after disturbances, we focused on scale-dependent processes, such as seed dispersal, that are important to the recruitment of individuals of B. gracilis. The type of simulated landscape was important to the recovery time of B. gracilis after a disturbance. Landscapes composed of independent plots recovered more rapidly following a disturbance than landscapes composed of interacting plots in which the recovery time was dependent on the spatial scale of the disturbance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Climatic change 34 (1996), S. 269-278 
    ISSN: 1573-1480
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Our objective was to evaluate the transient responses of grasslands in the central grassland region of North America to changes in climate. We used an individual plant-based gap dynamics simulation model (STEPPE-GP) linked with a soil water model (SOILWAT) to evaluate the effects of changes in climate on the composition and structure of grassland vegetation. Five functional types of plants were simulated based upon lifeform, physiology, and rooting distribution with depth. C3 and C4 perennial grasses with either a shallow or deep rooting distribution, and deeply rooted C3 shrubs were simulated under current climatic conditions and under a GFDL climate change scenario for nine sites representative of the temperature and precipitation regimes in the grassland region. Although vegetation at the sites responded differently to climate change, shifts in functional types occurred within 40 years of the start of the climate change. C4 grasses increased in dominance or importance at all sites with a change in climate, primarily as a result of increases in temperature in all months at all sites. The coolest sites that arc currently dominated by C3 grasses were predicted to shift to a dominance by C4 grasses, whereas sites that are currently dominated by C4 grasses had an increase in importance of this functional type with a change in climate. Current annual temperature was the best predictor of changes in C3 biomass, and C3 and C4 biomass combined; current annual precipitation was the best predictor of changes in C4 biomass. These predicted shifts in dominance and importance of C3 versus C4 grasses would have important implications for the management of natural grasslands as well as the cultivation of crops in the central grassland region.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5052
    Keywords: Functional types ; Grasslands ; Precipitation ; Soil texture ; Temperature
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Few studies have analyzed the production of plant species at regional scales in grassland ecosystems, due in part to limited availability of data at large spatial scales. We used a dataset of rangeland surveys to examine the productivities of 22 plant species throughout the Great Plains of the United States with respect to three environmental factors: temperature, precipitation and soil texture. Productivity of plant species was obtained from Natural Resource Conservation Service (NRCS) range site descriptions. We interpolated climate data from 296 weather stations throughout the region and used soil texture data from NRCS State Soil Geographic (STATSGO) databases. We performed regression analyses to derive models of the relative and absolute production of each species in terms of mean annual temperature (MAT), mean annual precipitation (MAP), and percentage SAND, SILT and CLAY. MAT was the most important factor for 55% of species analyzed; MAP was most explanatory for 40% of the species, and a soil texture variable was most important for only one species. Production of C3 species tended to be negatively related to MAT, MAP and positively related to CLAY. Production of C4 shortgrasses, in general, was positively related to MAT and negatively related to MAP and SAND, whereas C4 tallgrass productivity tended to be positively associated with MAP and SAND, and was highest at intermediate values of MAT. Our results indicate the extent to which functional types can be used to represent individual species. The regression equations derived in this analysis can be important inclusions in models that assess the effects of climate change on plant communities throughout the region.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5052
    Keywords: Bouteloua gracilis ; Cattle grazing ; June beetle larvae ; Root feeders ; Shortgrass steppe ; Succession
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The importance of disturbance intensity and herbivory by cattle and white grubs, or the larvae of June beetles (including Phyllophaga fimbripes), to recovery of shortgrass steppe ecosystems in Colorado, U.S.A. were evaluated over a fourteen year time period. Disturbance intensity was defined by survival of the dominant grass species (Bouteloua gracilis) after an outbreak of root feeding activity by white grubs. Sixteen patches of vegetation consisting of four pairs of adjacent ungrazed-grazed by cattle locations with two replicates that were recently affected by white grubs were selected in 1977. Disturbance intensity was determined in 1977 by the area in each patch that contained live tillers of B. gracilis. Permanent plots were located both within and outside of each patch. Plant basal cover and density by species were estimated at time of peak aboveground biomass in six different years on each plot. Successional dynamics on patches was similar to areas affected by other types of disturbances, however, rate of recovery was faster for patches affected by grubs. Grazing by cattle was infrequently important to plant recovery, a result similar to effects of grazing on other aspects of shortgrass steppe ecosystems. Disturbance intensity was important to recovery of B. gracilis since tiller survival in 1977 was linearly related to cover in each year of sampling. For ungrazed patches, initial conditions were important to recovery of B. gracilis for as many as 14 years. For grazed patches, initial conditions decreased and grazing increased in importance through time. Changes in resource quality and a more uniform distribution of roots due to grazing likely resulted in more complete mortality of plants by grubs under grazed compared to ungrazed conditions. Persistence of shortgrass ecosystems in spite of disturbances with different intensities are determined at least in part by characteristics of disturbances interacting with the ability of plants to respond, and in part by the evolutionary history of the system. Although white grubs affect shortgrass communities infrequently, they have large and important effects on plant community structure through time, and represent an important class of disturbance defined by intensity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Plant ecology 110 (1994), S. 67-82 
    ISSN: 1573-5052
    Keywords: Bouteloua gracilis ; Disturbance characteristics ; Shortgrass steppe ; Simulation model ; Succession
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We evaluated effects of soil texture and disturbance size on the successional dynamics of a semiarid grassland dominated by the perennial bunchgrass, Bouteloua gracilis (H.B.K.) Lag. ex Griffiths. A spatially-explicit gap dynamics simulation model was used to evaluate recovery patterns. The model simulates establishment, growth, and mortality of individual plants on an array of small plots through time at an annual time step. Each simulated disturbance consisted of a grid of plots of the same soil texture interconnected by processes associated with dispersal of B. gracilis seeds. Soil texture was incorporated into the model as effects on seed germination, seedling establishment, and subsequent growth of B. gracilis. Five soil texture classes and five disturbance sizes were simulated. Soil texture was more important to recovery of B. gracilis than either size of a disturbance or location of plots within a disturbance. Constraints on recruitment of seedlings had a greater effect on recovery than constraints associated with plant growth. Fastest recovery occurred on soils with the largest silt content, the variable that affects seedling establishment. Disturbances with slowest recovery were on soils with low silt contents, and either high or low water-holding capacity, the variable that affects plant growth. Biomass and recovery decreased as disturbance size increased, and as distance from a disturbed plot to the edge of the disturbance increased. In most cases, important interactions between soil texture and disturbance size on recovery were not found.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5036
    Keywords: bare soil openings ; Bouteloua gracilis ; plant cover ; small-scale disturbances ; shortgrass community
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Our objective was to evaluate effects of disturbance size and soil texture on the development of microtopography for a shortgrass plant community in north central Colorado USA. Disturbances, defined as the death of individual plants, were created in 1984 and 1985 to evaluate development through time of the small-scale pattern of perennial bunchgrasses and bare soil openings that characterize this semiarid grassland. Disturbed plots of three sizes (50, 100, 150 cm-diameter) comparable in size to naturally-occurring disturbances were produced by killing plants at two sites differing in soil texture (sandy loam, clay loam). Disturbed plots were not manipulated after being created. In 1993, a laser surveying instrument was used to measure heights of crowns of individual plants of the dominant species, the perennial bunchgrass Bouteloua gracilis ([H.B.K.] Lag. ex Griffiths), and bare soil openings between plants for two locations: within each disturbance and in the surrounding undisturbed landscape. Differences between crown heights of plants and bare soil openings were comparable for both the undisturbed landscape and inside disturbances indicating that small-scale microtopography had recovered within nine years after disturbance occurred. However, complete recovery to the undisturbed state had not occurred since crown heights of plants relative to bare soil openings were significantly less on disturbed than undisturbed locations. Differences in height between plant crowns and bare soil openings on disturbed plots increased as disturbance size increased, indicating greater soil redistribution with increasing plot size. Larger differences in height were also found on plots on the fine- than the coarse-textured soil, indicating the importance of soil particle size and plant cover type to the development of microtopography. Differences in height between microsites on disturbed plots were positively related to total plant cover and negatively related to cover of B. gracilis indicating the importance of this species to reducing erosion on disturbed areas. In this semiarid grassland, patterns in microtopography were heterogeneous, likely as a result of the small-scale redistribution of soil between bare soil openings and B. gracilis plants through time. Our results indicate that this redistribution of soil is affected by disturbance size, soil texture, and patchy plant cover. The major effect of small-scale disturbances on patterns in microtopography of the shortgrass steppe are causing plant death and exposing soil to erosional and depositional processes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-8477
    Keywords: disturbance ; long-distance clonal spreading ; life history ; grazing ; overwash ; barrier island ; short-grass steppe ; spatial simulation model
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Classical theory states that cover of annual plants should increase relative to perennials as disturbance frequency increases. However, it has been suggested that long-distance clonal spreading can allow some perennial plants to survive in highly disturbed areas by quickly spreading into disturbed patches. To evaluate these hypotheses, we analysed data of plant distributions in two different ecosystems, a barrier island and a short-grass steppe. The disturbances studied were sand deposition during storms (overwash) on the barrier island and grazing by cattle in the short-grass steppe. In each case the disturbance frequency varied over the ecosystem; we categorized different areas in terms of their disturbance frequencies. All plant species in each area were categorized as one of four plant life forms (1) annual or biennial, (2) herbaceous perennial without long-distance clonal spreading (3) herbaceous perennial with long-distance clonal spreading (i.e guerilla form) and (4) woody plant. Percentage cover of each plant life form in each disturbance frequency category was calculated. In both ecosystems, (1) there was an increase in the relative cover of annuals as one moved from areas of low to moderate disturbance frequencies, but then a decrease in cover of annuals as one moved into the areas of highest disturbance frequency and (2) the guerilla forms showed the greatest relative increase in cover from moderately to highly disturbed areas. The combination of two factors can explain this pattern: (1) long-distance clonal spreading effectively reduces the time to colonization of recently disturbed sites and (2) effects of the disturbances in these two systems are probably more severe for seeds than for stems. We illustrate these effects using a spatially explicit simulation model of the population dynamics of plants in a disturbed landscape.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1995-07-01
    Print ISSN: 0361-5995
    Electronic ISSN: 1435-0661
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1989-09-01
    Print ISSN: 0921-2973
    Electronic ISSN: 1572-9761
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1996-01-01
    Print ISSN: 0304-3800
    Electronic ISSN: 1872-7026
    Topics: Biology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...