ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 62 (1984), S. 256-261 
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In laboratory experiments, the predator, Notonecta glauca L., was exposed to varying densities of surfacedwelling culicine mosquito larvae and the bottom-inhabiting isopod, Asellus aquaticus L., in either shallow or deep water at 20° C. At this temperature N. glauca spends most of the time at the water's surface, so, by changing water depth the accessibility of Asellus to the predator was manipulated relative to a consistent Culex presence. All N. glauca spent more time submerged in shallow (75 mm) than in deep (275 mm) water but submergence times were independent of exposure to different prey combinations. Mature females made more descents and remained submerged longer than males. All N. glauca captured more Asellus in shallow than in deep water but males and newly-moulted females captured Culex predominantly, in all treatments, regardless of water depth or prey availability. Mature females captured mostly Asellus in shallow water and Culex in deep water. When presented with small rather than large Asellus, mature females spent an equivalent amount of time submerged as in the large Asellus treatments and ate the same number of Asellus but more Culex. By foraging on Culex larvae, male and newly moulted female N. glauca maximise their rate of energy intake. In contrast, mature females may actively select Asellus to optimise something other than energy (e.g. specific nutrients). Alternatively their predation on Asellus may be simply a consequence of a high encounter rate with this prey type, reflecting habitat use determined by factors that do not concern prey capture directly.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of chemical ecology 15 (1989), S. 819-853 
    ISSN: 1573-1561
    Keywords: Asclepias syriaca ; biogeography ; cardenolide fingerprint ; chemical defense ; Danaus plexippus ; Lepidoptera ; Danaidae ; emetic potency ; migration ; milkweed ; monarch butterfly ; plant-herbivore interaction ; predation ; sequestration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Monarch butterfly,Danaus plexippus (L.), larvae were collected during August 1983 from the common milkweed,Asclepias syriaca L., across its extensive North American range from North Dakota, east to Vermont, and south to Virginia. This confirms that the late summer distribution of breeding monarchs in eastern North America coincides with the range of this extremely abundant milkweed resource. Plant cardenolide concentrations, assayed by spectrophotometry in 158 samples from 27 collection sites, were biased towards plants with low cardenolide, and ranged from 4 to 229 μg/ 0.1 g dry weight, with a mean of 50 μg/0.1 g. Monarch larvae reared on these plants stored cardenolides logarithmically, and produced 158 adults with a normally distributed concentration range from 0 to 792 μg/0. l g dry butterfly, with a mean of 234 μg/0.1 g. Thus butterflies increased the mean plant cardenolide concentration by 4.7. The eastern plants and their resultant butterflies had higher cardenolide concentrations than those from the west, and in some areas monarchs sequestered more cardenolide from equivalent plants. Plants growing in small patches had higher cardenolide concentrations than those in larger patches, but this did not influence butterfly concentration. However, younger plants and those at habitat edges had higher cardenolide concentrations than either older, shaded, or open habitat plants, and this did influence butterfly storage. There were no apparent topographical differences reflected in the cardenolides of plants and butterflies. Twenty-eight cardenolides were recognized by thin-layer chromatography, with 27 in plants and 21 in butterflies. Butterflies stored cardenolides within the more polar 46% of the plantR d range, these being sequestered in higher relative concentrations than they occurred in the plants. By comparison with published TLC cardenolide mobilities, spots 3, 4, 9, 16, 24 or 25, 26, and 27, may be the cardenolides syrioside, uzarin, syriobioside, syriogenin, uzarigenin, labriformidin, and labriformin, respectively. Cochromatography with cardenolide standards indicated that desglucosyrioside did not occur in the plants but did occur in 70% of the butterflies, and aspecioside was in 99% of the plants and 100% of the butterflies. The polar aspecioside was the single most concentrated and diagnostic cardenolide in both plants and butterflies. ButterflyR d values were dependent on those of the plant, and both showed remarkable uniformity over the range of areas sampled. Thus contrary to previous reports,A. syriaca has a biogeographically consistent cardenolide fingerprint pattern. The ecological implications of this for understanding the monarch's annual migration cycle are significant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1984-05-01
    Print ISSN: 0029-8549
    Electronic ISSN: 1432-1939
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...