ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    ISSN: 1432-1866
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Description / Table of Contents: Resumen (translated by E. Pascual) La mineralización de Filón Norte (Tharsis, Faja Pirítica Ibérica) es uno de los mayores sulfuros masivos del mundo, con más de 100 Mt millones de toneladas de reservas originales. La estructura actual de la mineralización está formada por un sistema complejo e imbricado de cabalgamientos de bajo ángulo buzantes al norte y de edad varisca. Hay tres unidades tectónicas mayores, cada una con sus propios rasgos litológicos e hidrotermales, separadas por potentes zonas de falla. Internamente se organizan en un sistema de tipo “duplex” buzante hacia la zona de raíz con las rocas más competentes formando “horses” rodeados por filonitas. La mineralización encaja en la Unidad Inferior y está formada por varias láminas apiladas de sulfuros masivos y pizarras en las que encaja una zona de “stockwork” sin zonación hidrotermal evidente. La Unidad Intermedia consiste en pizarras y basaltos (espilitas) con una ankeritización generalizada y cortadas por abundantes brechas hidrotermales. La Unidad Superior es la menos hidrotermalizada y está formada por dacitas silicificadas y un “sill” de diabasas. La reconstrucción tectónica sugiere que la secuencia está invertida y las rocas ígneas alteradas se localizaban orginariamente bajo los sulfuros masivos. Los isótopos de carbono, oxígeno y azufre de los sulfuros masivos y las otras rocas hidrotermales así como la asociación mineral y la evolución paragenética sugieren que la precipitación de los sulfuros en el fondo marino tuvo lugar a bajas temperaturas (〈≈150 °C) sin evidencias, al menos en las zonas observables, de un evento de alta temperatura rico en cobre. Una ebullición esporádica v profunda bajo el fondo marino es probablemente la responsable de la formación de las brechas hidrotermales y la gran amplitud del “stockwork”. Su enriquecimiento en Co y Au se interpreta como debido a la superposición de varios factores críticos que incluyen la relación con pizarras negras, la baja temperatura de formación y la ebullición de los fluidos hidrotermales. La potencia y configuración actual de la mineralización es debida al apilamien totectónico de una delgada y extensa lámina (2–4 km2) de sulfuros masivos. Esta se formó en relación con la exhalación difusa en el fondo marino de agua marina caliente equilibrada con las rocas infrayacentes. La precipitación de los sulfuros masivos tuvo lugar por efecto de un enfriamiento instantáneo, actividad bacteriogénica y deposición de partículas en una cuenca de características inusuales, restringida, somera y anóxica con poca entrada de material detrítico, con una importante actividad hidrotermal relacionada con una fracturación extensional sinsedimentaria. La resedimentación de los sulfuros es importante y da lugar a la mezcla de las facies proximales y distales. La deformación tectónica es muy heterogénea y está fundamentalmente canalizada a lo largo de las bandas de deformación dominadas por las filonitas. Por lo tanto, las texturas sedimentarias y diagenéticas están bien preservadas fuera de estas bandas de deformación. En los sulfuros masivos, la recristalización varisca es poco importante y sólo algunas de estas texturas tempranas han sido reemplazadas por otras de tipo tectónico o metamórfico. El stockwork está más deformado que los sulfuros masivos. La deformación ha tenido un efecto crítico sobre la morfología actual de la masa y la distribución de los minerales metálicos. Este depósito es un ejemplo típico de sulfuros masivos ricos en Zn laminares, anóxicos, de baja temperatura, encajados en pizarras y formados en cuencas extensionales ensiálicas.
    Notes: Abstract The Filón Norte orebody (Tharsis, Iberian Pyrite Belt) is one of the largest pyrite-rich massive sulphide deposits of the world. The present structure of the mineralization consists of an internally complex low-angle north-dipping thrust system of Variscan age. There are three major tectonic units separated by thick fault zones, each unit with its own lithologic and hydrothermal features. They are internally organized in a hinterland dipping duplex sequence with high-angle horses of competent rocks (igneous and detritic rocks and massive sulphides) bounded by phyllonites. The mineralization is within the Lower Unit and is composed of several stacked sheets of massive sulphides and shales hosting a stockwork zone with no obvious zonation. The Intermediate Unit is made up of pervasively ankeritized shales and basalts (spilites). Here, hydrothermal breccias are abundant. The Upper Unit is the less hydrothermally altered one and consists of silicified dacites and a diabase sill. The tectonic reconstruction suggests that the sequence is inverted and the altered igneous rocks were originally below the orebody. Carbon, oxygen and sulphur isotopes in the massive sulphides and hydrothermal rocks as well as the mineral assemblage and the paragenetic succession suggest that the sulphide precipitation in the sea floor took place at a low temperature (〈≈150 °C) without indication, at least in the exposed section, of a high-temperature copper-rich event. Sporadic deep subsea-floor boiling is probably responsible for the formation of hydrothermal breccias and the wide extension of the stockwork. Its Co-Au enrichment is interpreted as being related with the superposition of some critical factors, such as the relationship with black shales, the low temperature of formation and the boiling of hydrothermal fluids. The present configuration and thickness of the orebody is due to the tectonic stacking of a thin and extensive blanket (2–4 km2) of massive sulphides with low aspect ratio. They were formed by poorly focused venting of hot modified seawater equilibrated with underlying rocks into the seafloor. Massive sulphide precipitation took place by hydrothermal fluid quenching, bacteriogenic activity and particle settling in an unusual, restricted, euxinic and shallow basin (brine pool?) with a low detritic input but with important hydrothermal activity related to synsedimentary extensional faulting. Resedimentation of sulphides seems to be of major importance and responsible for the observed well-mixed proximal and distal facies. The tectonic deformation is largely heterogeneous and has been mostly channelled along the phyllonitic (tectonized shales) deformation bands. Thus, sedimentary and diagenetic textures are relatively well-preserved outside the deformation bands. In the massive sulphides, superimposed Variscan recrystallization is not very important and only some early textures are replaced by metamorphic/tectonic ones. The stockwork is much more deformed than the massive sulphides. The deformation has a critical effect on the present morphology of the orebody and the distribution of the ore minerals. This deposit is a typical example of the sheet-like, shale-hosted, anoxic, low temperature and Zn-rich massive sulphides developed in a ensialic extensional basin.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1997-12-02
    Print ISSN: 0026-4598
    Electronic ISSN: 1432-1866
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...