ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Choline-binding proteins (CBPs) from Streptococcus pneumoniae are involved in several important processes. Inactivation of zmpB, a gene that encodes a surface-located putative zinc metalloprotease, in a S. pneumoniae serotype 4 strain was recently reported to reveal a composite phenotype, including extensive chain formation, lysis defect and transformation deficiency. This phenotype was associated with the lack of surface expression of several CBPs, including the major autolysin LytA. LytA, normally 36 kDa in size, was reported to form an SDS-resistant 80 kDa complex with CinA. ZmpB was therefore proposed to control translocation of CBPs to the surface, possibly through the proteolytic release of CBPs (and RecA) from CinA. Based on the use of 12 independent mariner insertions in the zmpB gene of the well-characterized R6 laboratory strain, we could not confirm several of these observations. Our zmpB mutants: (i) did not form chains; (ii) lysed normally in the presence of deoxycholate, which indicates the presence of a functional autolysin; (iii) transformed at normal frequency; and (iv) contained bona fide CinA and LytA species. Polymorphism of ZmpB between R6 and the serotype 4 isolate could not account for the discrepancy, as inactivation of zmpB (through replacement by transposon-inactivated zmpB R6 alleles) in the latter strain did not affect separation of daughter cells and autolysis. The conflicting observations could be explained by our finding that the reportedly serotype 4 zmpB‘mutant’ differed from its S. pneumoniae parent in lacking capsule and in exhibiting characteristic traits of the Streptococcus viridans group, including resistance to optochin.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 45 (2002), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: In a working model for the uptake of transforming DNA based on evidence taken from both Bacillus subtilis and Streptococcus pneumoniae, the ComG proteins are proposed to form a structure that provides access for DNA to the ComEA receptor through the peptidoglycan. DNA would then be delivered to the ComEC–ComFA transport complex. A DNA strand would be degraded by a nuclease, while its complement is pulled into the cell by ComFA through an aqueous pore formed by ComEC. The nuclease is known in S. pneumoniae only as EndA. We have examined the processing (i.e. binding, degradation and internalization) of DNA in S. pneumoniae strains lacking candidate uptake proteins. Mutants were generated by transposon insertion in endA, comEA/C, comFA/C, comGA and dprA. Processing of DNA was abolished only in a comGA mutant. As significant binding was measured in comEA mutants, we suggest the existence of two stages in binding: surface attachment (abolished in a comGA mutant) required for and preceding deep binding (by ComEA). Abolition of degradation in comGA and comEA mutants indicated that, despite its membrane location, EndA cannot access donor DNA by itself. We propose that ComEA is required to deliver DNA to EndA. DNA was still bound and degraded in comEC and comFA mutants. We conclude that recruitment of EndA can occur in the absence of ComEC or ComFA and that EndA is active even when the single strands it produces are not pulled into the cell. Finally, inactivation of dprA had no effect on the internalization of DNA, indicating that DprA is required at a later stage in transformation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Two operons, comAB and comCDE, play a key role in the co-ordination of spontaneous competence development in cultures of Streptococcus pneumoniae. ComAB is required for export of the comC-encoded competence-stimulating peptide (CSP). Upon CSP binding, the histidine kinase ComD activates ComE, its cognate response regulator, required for autoinduction of comCDE and for induction of the late competence genes. To understand better the early control of competence development, mutants upregulating comCDE (ComCDEUP) were isolated using a comC–lacZ transcriptional fusion. Mutants were generated by polymerase chain reaction mutagenesis of the comCDE region and by in vitro transposon mutagenesis of the chromosome. Both types of ComCDEUP mutants exhibited similar phenotypes. They differed from wild type in displaying trypsin-resistant transformation, competence under acid growth conditions and expression of comCDE under microaerobiosis; increased production of CSP in the mutants could account for the various phenotypes. The ComCDEUP transposon mutations included four independent insertions in the ciaR gene, which encodes the response regulator of a two-component system previously found to affect competence, and two immediately upstream of the comAB operon. The latter two resulted in comAB overexpression, indicating that CSP export is rate limiting. Among comDE point mutations, a single amino acid change in ComD (T233I) conferred constitutive, CSP-independent competence and resulted in comAB overexpression, providing support for the hypothesis that ComE regulates comAB; a ComE mutant (R120S) exhibited altered kinetics of competence shut-off. Collectively, these data indicate that pheromone autoinduction, cross-regulation of the comAB and comCDE operons and, possibly, competence shut-off contribute to the early control of competence development in S. pneumoniae. They argue for a metabolic control of competence, mediated directly or indirectly by CiaR, and they suggest that both comAB and comCDE are potential targets for regulation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 21 (1996), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: An unmodified heptadecapeptide pheromone capable of eliciting competence for genetic transformation in Streptococcus pneumoniae has recently been identified and characterized. In considering possible signaltransduction mechanisms for the peptide, the previously characterized Ami oligopeptide permease and the three highly homologous oligopeptide-binding lipoproteins, AmiA. AliA, and AliB, appeared to be good candidates for receptors. We therefore compared the spontaneous transformability of Ami, AliA and AliB mutants to that of an isogenic wild-type strain and we investigated the response of the various mutants to treatment with synthetic competence-stimulating peptide (CSP). Our results clearly demonstrate that neither Ami nor any of the three highly homologous oligopeptide-binding lipoproteins identified so far in S. pneumoniae are required for competence induction following treatment with synthetic CSP. Although the existence of a fourth unidentified oligopeptide-binding lipoprotein and/or a second oligopeptide permease operon could not be completely ruled out, we favour the hypothesis that CSP signal transmission rather involves a two-component regulatory system. Although none of the single or double Ami and Ali mutants tested appeared severely affected for competence, an exceptional aliB plasmid-insertion mutation abolished competence completely. In addition, the triple AmiA-AliA-AliB mutant differed from wild type in showing no sharp peak of competence but exhibiting transformability throughout the exponential phase of growth. These and previous observations are discussed and a general hypothesis is proposed to account for the modulation of competence by peptide permease mutants in S. pneumoniae.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The recently identified recA gene of the naturally transformable bacterium Streptococcus pneumoniae has been further characterized by constructing a recA null mutation and by investigating its regulation. The recA mutation has been shown to confer both DNA repair (as judged from sensitivity to u.v. and methyl methane sulphonate) and recombination deficiencies. Plasmid transformation into the recA mutant was also drastically reduced. Western blotting established that recA gene expression is increased several fold at the onset of competence for genetic transformation, increased expression was associated with the appearance of a recA-specific transcript, approximately 5.7 kb long. This transcript indicated that recA is part of a competence-inducible (cin) operon. The major (about 4.3 kb) transcript detected from non-competent cells did not include cinA, the first gene in the operon, suggesting that this gene could be specifically required at some stage in the transformation process. Detection of small amounts of the 5.7 kb polycistronic mRNA in cells treated with mitomycin C suggested that the operon could also be damage inducible. In addition, mitomycin C treatment of a recA lysogenic strain did not lead to prophage induction and cell lysis. This is unlike the situation of a recA+ lysogen. Together these results demonstrate that RecA controls lysogenic induction and suggest the existence of a SOS repair system in S. pneumoniae.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Transcriptional activation of the recA gene of Streptococcus pneumoniae was previously shown to occur at competence. A 5.7 kb recA-specific transcript that contained at least two additional genes, cinA and dinF, was identified. We now report the complete characterization of the recA operon and investigation of the role of the competence-specific induction of recA. The 5.7 kb competence-specific recA transcript is shown to include lytA, which encodes the pneumococcal autolysin, a protein previously shown to contribute to virulence of S. pneumoniae. Uncoupling (denoted Ind−) of recA and/or the downstream genes was achieved through the placement of transcription terminators within the operon, either upstream or downstream of recA. Prevention of the competence-specific induction of recA severely affected spontaneous transformation. Transformation efficiencies of recA+ (Ind−) and of wild-type cells were compared under various conditions and with different donor DNA. Chromosomal transformation was reduced 17- (chromosomal donor) to 45-fold (recombinant plasmid donor), depending on the donor DNA, and plasmid establishment was reduced 129-fold. Measurement of uptake of radioactively labelled donor DNA in transformed cells in parallel with scoring for transformants (chromosomal donor) revealed normal uptake, but a 21-fold reduction in recombination in a recA+ (Ind−) strain, indicating that the transformation defect was primarily in recombination. Strikingly enough, a much larger (460-fold) reduction in recombination was observed for the shortest homologous donor fragment used (878 nucleotides long). Possible interpretations of the observation that basal RecA appears unable to promote efficient recombination whatever the number and the length of donor fragments taken up are proposed. The role of recA induction is discussed in view of the potential contribution of transformation to genome plasticity in this pathogen.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: We show that deletion of a gene of Streptococcus pneumoniae, which we call mutX, confers a mutator phenotype to resistance to streptomycin. Analysis of the DNA sequence changes that occurred in several streptomycin-resistant mutants showed that mutations are unidirectional AT to CG transversions. The mutX gene is located immediately downstream of the previously identified ung gene and genetic evidence suggests that the two genes are coordinately regulated. Nucleotide sequence determination reveals that the mutX gene encodes a 17870 Da protein (154 residues) which exhibits significant homology with the MutT protein of Escherichia coli, a nucleoside tri-phosphatase (dGTP pyrophosphohydrolase). The mutX gene complements the E coli mutT mutator phenotype when introduced on a plasmid. Site-directed mutagenesis and analysis of nitrosoguanidine-induced mutT mutants suggest that a small region of high homology between the two proteins (61% identity over 23 residues) is part of the catalytic site of the nucleoside triphosphatase. Computer searching for sequence homology to MutX uncovered a second E. coli protein, the product of orf17, a gene of unknown function located near the ruvC gene. The region of high homology between MutX and MutT is also conserved in this protein, which raises the interesting possibility that the orf17 gene plays some role in determining mutation rates in E. coli. Finally, a small set of proteins, including a family of virus-encoded proteins and two evolutionarily conserved proteins encoded by an antisense transcript from the Xenopus laevis and human bFGF genes, were also found to harbour significant homology to this highly conserved region.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Competence for genetic transformation in the human pathogen Streptococcus pneumoniae is a transient physiological property. A competence-stimulating peptide, CSP, was recently identified as the processed product of the comC gene. As conflicting results have been reported regarding CSP autoinduction, we monitored the CSP-induced expression of comCDE in derivatives of strain R6 using comC::lacZ fusions. Autoinduction was demonstrated in this genetic background. The kinetics of CSP-induced transcription of comCDE and of a late competence-induced (cin) operon were compared. While the comCDE mRNA level was highest 5 min after CSP addition then decreased, maximal cin expression required 10 min exposure to CSP. Transformation frequencies paralleled cin expression. After 20 min exposure to CSP, both mRNAs disappeared almost completely, providing evidence for an intrinsic mechanism for shutting off CSP signal transduction. Investigation of spontaneous competence development in mixed cultures indicated that transformation of wild-type cells was delayed in the presence of CSP non-producers, consistent with a direct role of CSP in quorum sensing. The effect of varying inoculum size on the timing of competence development was investigated. While competence developed in wild-type cultures at a similar critical density, about OD550 = 0.15, a mutant lacking the three oligopeptide-binding lipoproteins transformed at a 50-fold reduced cell density. The latter effect was mimicked in a strain harbouring a duplication of comC. Altogether, these results suggest that CSP does not accumulate passively in pneumoccal cultures, but that comCDE basal expression can be modulated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The adcCBA putative operon of Streptococcus pneumoniae, an important human pathogen, was identified in a search for transformation-deficient mutants. It was found to exhibit homology to ATP-binding cassette (ABC) transport operons encoding streptococcal adhesins such as FimA of Streptococcus parasanguis and PsaA of S. pneumoniae. The latter was recently shown to be essential for virulence as judged by intranasal or intraperitoneal challenge of mice. We suggested previously that AdcA, together with a set of 14 proteins, including PsaA and homologous adhesins, defines a new family of external solute-binding proteins specific for metals. In this work, Northern analysis revealed the existence of two adcB–adcA specific transcripts originating within adcC or further upstream, consistent with the hypothesis that adc is an operon. Investigation of growth of adc and psaA mutants in synthetic medium revealed that the addition of Zn improved the growth rate of the former, whereas the latter exhibited an absolute requirement for added Mn. A psaA–adc double mutant turned out to be essentially non-viable unless both metals were added in the appropriate ratio. Taken together, these results suggest a previously undocumented requirement of S. pneumoniae for Zn and Mn. The addition of Zn also restored near-normal spontaneous transformation of adc mutant cells in standard transformation medium. Zn was found to be specifically required soon after contact of cells with the competence-stimulating peptide, revealing an unsuspected need for Zn in transformation of S. pneumoniae. The removal of Mn from standard transformation medium also resulted in transformation deficiency of psaA mutant cells. Taken together, these results lead us to propose that Adc is an ABC-type Zn permease, the first such protein complex identified in any organism, and that Psa is an ABC-type Mn permease complex.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...