ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2013-09-24
    Description: [1]  We performed shock compression experiments on preheated forsterite liquid (Mg 2 SiO 4 ) at an initial temperature of 2273 K and have revised the equation of state (EOS) that was previously determined by shock melting of initially solid Mg 2 SiO 4 (300 K). The linear Hugoniot, U S  = 2.674 ± 0.188 + 1.64 ± 0.06 u p km/s, constrains the bulk sound speed within a temperature and composition space as yet unexplored by 1-bar ultrasonic experiments. We have also revised the EOS for enstatite liquid (MgSiO 3 ) to exclude experiments that may have been only partially melted upon shock compression and also the EOS for anorthite liquid, which now excludes potentially un-relaxed experiments at low pressure. The revised fits and the previously determined EOS of fayalite and diopside were used to produce isentropes in the multicomponent CaO-MgO-Al 2 O 3 -SiO 2 -FeO system at elevated temperatures and pressures. Our results are similar to those previously presented for peridotite and simplified “chondrite” liquids such that regardless of where crystallization first occurs, the liquidus solid sinks upon formation. This process is not conducive to the formation of a basal magma ocean. We also examined the chemical and physical plausibility of the partial melt hypothesis to explain the occurrence and characteristics of ultralow velocity zones. We determined that the ambient mantle cannot produce an equilibrium partial melt and residue that is sufficiently dense to be a ULVZ mush. The partial melt would need to be segregated from its equilibrium residue and combined with a denser solid component to achieve a sufficiently large aggregate density.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-06-29
    Description: [1]  We performed seventeen new shock wave experiments on pre-heated (1673 K) hedenbergite liquid (CaFeSi 2 O 6 ) and two model basalt liquids (an equimolar binary mix of CaAl 2 Si 2 O 8  + CaFeSi 2 O 6 and an equimolar ternary mix of CaAl 2 Si 2 O 8  + CaFeSi 2 O 6  + CaMgSi 2 O 6 ) in order to determine their equations of state (EOS). Ambient pressure density measurements on these and other Fe-bearing silicate liquids indicate that FeO has a partial molar volume that is highly dependent on composition, which leads to large errors in estimates of the densities of Fe-bearing liquids at ambient pressure based on an ideal mixing of any fixed set of end-member liquids. We formulated a series of mixing tests using the EOS determined in this study to examine whether ideal mixing of volumes might nevertheless suffice to describe the ternary system CaAl 2 Si 2 O 8 -CaFeSi 2 O 6 -CaMgSi 2 O 6 at high temperature and pressure. The ideal mixing null hypothesis is rejected; compositional variations in partial molar volume of FeO appear to extend to high pressure. Only densities of Fe-bearing liquid mixtures with oxide mole fraction of FeO less than 0.06 can be adequately approximated using an ideal solution.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...