ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1992-08-01
    Description: Recent progress to better understand the environmental threat of micrometeoroid and space debris to the solar dynamic radiator for the Space Station Freedom power system is reported. The objective was to define a design which would perform to survivability requirements over the expected lifetime of the radiator. A previous paper described the approach developed to assess on-orbit survivability of the solar dynamic radiator due to micrometeoroid and space debris impacts. Preliminary analyses were presented to quantify the solar dynamic radiator survivability. These included the type of particle and particle population expected to defeat the radiator bumpering. Results of preliminary hypervelocity impact (HVI) testing performed on radiator panel samples were also presented. This paper presents results of a more extensive test program undertaken to further define the response of the solar dynamic radiator to HVI. Tests were conducted on representative radiator panels (under ambient, nonoperating conditions) over a range of particle size, particle density, impact angle, and impact velocity. Target parameters were also varied. Data indicate that analytical penetration predictions are conservative (i.e., pessimistic) for the specific configuration of the solar dynamic radiator. Test results are used to define more rigorously the solar dynamic radiator reliability with respect to HVI. Test data, analyses, and survivability results are presented.
    Print ISSN: 0199-6231
    Electronic ISSN: 1528-8986
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1992-08-01
    Description: A great deal of experimentation and analysis has been performed to quantify penetration thresholds of components which will experience orbital debris impacts. Penetration has been found to depend upon mission-specific parameters such as orbital altitude, inclination, and orientation of the component; and upon component specific parameters such as material, density, and the geometry particular to its shielding. Experimental results are highly dependent upon shield configuration and cannot be extrapolated with confidence to alternate shield configurations. Also, current experimental capabilities are limited to velocities which only approach the lower limit of predicted orbital debris velocities. Therefore, prediction of the penetrating particle size for a particular component having a complex geometry remains highly uncertain. This paper describes the approach developed to assess on-orbit survivability of the solar dynamic radiator due to micrometeroid and space debris impacts. Preliminary analyses are presented to quantify the solar dynamic radiator survivability, and include the type of particle and particle population expected to defeat the radiator bumpering (i.e., penetrate a fluid flow tube). Results of preliminary hypervelocity impact testing performed on radiator panel samples (in the 6 to 7 km/sec velocity range) are also presented. Plans for further analyses and testing are discussed. These efforts are expected to lead to a radiator design which will perform to Space Station Freedom requirements over the expected lifetime.
    Print ISSN: 0199-6231
    Electronic ISSN: 1528-8986
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-10-01
    Print ISSN: 0094-5765
    Electronic ISSN: 1879-2030
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-02-01
    Print ISSN: 0094-5765
    Electronic ISSN: 1879-2030
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: Presented here are results of a test program undertaken to further define the response of the solar dynamic radiator to hypervelocity impact (HVI). Tests were conducted on representative radiator panels (under ambient, nonoperating conditions) over a range of velocity. Target parameters are also varied. Data indicate that analytical penetration predictions are conservative (i.e., pessimistic) for the specific configuration of the solar dynamic radiator. Test results are used to define the solar dynamic radiator reliability with respect to HVI more rigorously than previous studies. Test data, reliability, and survivability results are presented.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: ASME, Transactions, Journal of Solar Energy Engineering (ISSN 0199-6231); p. 142-149.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: A great deal of experimentation and analysis was performed to quantify penetration thresholds of components which will experience orbital debris impacts. Penetration was found to depend upon mission specific parameters such as orbital altitude, inclination, and orientation of the component; and upon component specific parameters such as material, density and the geometry particular to its shielding. Experimental results are highly dependent upon shield configuration and cannot be extrapolated with confidence to alternate shield configurations. Also, current experimental capabilities are limited to velocities which only approach the lower limit of predicted orbital debris velocities. Therefore, prediction of the penetrating particle size for a particular component having a complex geometry remains highly uncertain. An approach is described which was developed to assess on-orbit survivability of the solar dynamic radiator due to micrometeoroid and space debris impacts. Preliminary analyses are presented to quantify the solar dynamic radiator survivability, and include the type of particle and particle population expected to defeat the radiator bumpering (i.e., penetrate a fluid flow tube). Results of preliminary hypervelocity impact testing performed on radiator panel samples (in the 6 to 7 km/sec velocity range) are also presented.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: ASME, Transactions, Journal of Solar Energy Engineering (ISSN 0199-6231); p. 135-141.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-19
    Description: Direct extraction and reaction of the 50 ppm H found in mature lunar soil with a small fraction of the 1 percent ilmenite found in even the most Ti-poor lunar soils is a viable method of producing H2O2 and H2O for propellants and life support. A plant with a mass of approximately 62 metric tons can produce about 8 metric tons of LOX and 1.2 metric tons of LH2 per month. The concept is viable in even Ti-poor regions if the soils have long exposure to solar wind. The plant processes over 29,000 tons of soil with about 50 ppm H per month. The mine that feeds the plant excavates over 8600 sq m per month with a fleet of three front-end loaders and five haulers. Trade studies demonstrate that nuclear power accompanied by a high process plant duty cycle results in a far smaller installation than a solar-powered unit.
    Keywords: GROUND SUPPORT SYSTEMS AND FACILITIES (SPACE)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: A hypervelocity impact (HVI) Whipple Shield and a method for shielding a wall from penetration by high velocity particle impacts where the Whipple Shield is comprised of spaced apart inner and outer metal sheets or walls with an intermediate cloth barrier arrangement comprised of ceramic cloth and high strength cloth which are interrelated by ballistic formulae.
    Keywords: Nonmetallic Materials
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-28
    Description: The results of the shielding screening and optimization work conducted at the NASA Johnson Space Center Hypervelocity Impact Research Laboratory (HIRL) are described. The impact tests to investigate and optimize certain aspects of the aluminum mesh double-bumper concept, which was considered the best performer in the screening test, are analyzed. Preliminary results indicate that the aluminum mesh double-bumper concept shows a 30 to 40 percent weight reduction compared to an aluminum Whipple shield in the velocity range study, besides such advantages as an increased resistance to penetration and the fact that the aluminum mesh does not produce damaging secondary ejecta particles. It is suggested that the ballistic protection can be improved even more if an intermediate layer of a high-strength cloth is attached near the rear wall.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: AIAA PAPER 90-1336
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: A consolidated list is presented of meteoroid debris shield equations which have been given in the referenced memorandums. In some cases, equations have been updated; thus, this memorandum supersedes reference 1. The equations are presented in two parts: (1) shield sizing equations which are used to produce preliminary estimates of shielding weights; and (2) response equations to describe the impact conditions (projectile size as a function of velocity, density, and impact angle) causing failure of a given shield that are to be used for probability analyses (such as in the modified BUMPER program). Specific equations are given that are applicable for the following types of shields: aluminum Whipple shields; Nextel multishock (MS) shields; and mesh double bumper (MDB) shields. These equations will be updated in the future as warranted by the results of additional HVI tests, analyses, and shield modeling.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-105527 , NAS 1.15:105527
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...