ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-01-01
    Print ISSN: 0925-4005
    Electronic ISSN: 1873-3077
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: The alignment and performance of the optical system for the Pressure Modulator Infrared Radiometer (PMIRR) are described. This limb and nadir scanning instrument will be used for remote sounding of the Martian atmosphere and will be launched on Mars Observer in 1992. The instrument has nine channels distributed over the wavelength range 0.3 to 50 microns and has two pressure modulator cells for water vapor and carbon dioxide.
    Keywords: SPACECRAFT INSTRUMENTATION
    Type: In: Infrared technology XVII; Proceedings of the Meeting, San Diego, CA, July 22-26, 1991 (A93-38376 15-35); p. 213-218.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: The development of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has been completed at JPL. This paper outlines the functional requirements of the spectrometer optics subsystem, and describes the spectrometer optical design. The optical subsystem performance is shown in terms of spectral modulation transfer functions, radial energy distributions, and system transmission at selected wavelengths for the four spectrometers. An outline of the spectrometer alignment is included.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). A Description of the Sensor, Ground Data Processing Facility, Laboratory Calibration, and First Results; Airborne Visible(Inf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-31
    Description: The foreoptics, fiber optic system and calibration source of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) are described. The foreoptics, based on a modified Kennedy scanner, is coupled by optical fibers to the four spectrometers. The optical fibers allow convenient positioning of the spectrometers in the limited space and enable simple compensation of the scanner's thermal defocus (at the -23 C operating temp) by active control of the fiber focal plane position. A challenging requirement for the fiber optic system was the transmission to the spectral range 1.85 to 2.45 microns at .45 numerical aperture. This was solved with custom fluoride glass fibers from Verre Fluore. The onboard calibration source is also coupled to the spectrometers by the fibers and provides two radiometric levels and a reference spectrum to check the spectrometers' alignment. Results of the performance of the assembled subsystems are presented.
    Keywords: OPTICS
    Type: Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). A Description of the Sensor, Ground Data Processing Facility, Laboratory Calibration, and First Results; Airborne Visible(Inf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-03-10
    Description: The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.
    Keywords: SPACECRAFT INSTRUMENTATION
    Type: JPL, Workshop Proceedings: Optical Systems Technology for Space Astrophysics in the 21st Century, Volume 3; p 133-148
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Description: This review covers the optical design of passive remote sensing optical instruments. The review concentrates on the design of spaceborne multispectral cameras and imaging spectometers. The major designs that have been produced over the past ten years are discussed, and new designs for future imaging spectrometers are presented.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Keywords: Optics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The optical design of the wide field of view refractive camera, 34 degrees diagonal field, for the TESS payload is described. This fast f/1.4 cryogenic camera, operating at -75 C, has no vignetting for maximum light gathering within the size and weight constraints. Four of these cameras capture full frames of star images for photometric searches of planet crossings. The optical design evolution, from the initial Petzval design, took advantage of Forbes aspheres to develop a hybrid design form. This maximized the correction from the two aspherics resulting in a reduction of average spot size by sixty percent in the final design. An external long wavelength pass filter was replaced by an internal filter coating on a lens to save weight, and has been fabricated to meet the specifications. The stray light requirements were met by an extended lens hood baffle design, giving the necessary off-axis attenuation.
    Keywords: Instrumentation and Photography
    Type: GSFC-E-DAA-TN24786 , SPIE; Sep 09, 2015 - Sep 13, 2015; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: A 1:1 Offner mirror system is modified to work as a grating spectrometer for the infrared by placing a grating on the secondary convex mirror of the system. Slight adjustment of the configuration combined with tilt of the secondary provide the necessary degrees of freedom to correct for astigmatism of the system. Additional control may be obtained by using a holographic optical element (HOE), constructed to add necessary compensating aberrations. Details of the best configuration and the limitations of performance are presented.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Current Developments in Optical Engineering II; Aug 18, 1987 - Aug 21, 1987; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...