ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-04-05
    Description: Multiple CMIP5 (Coupled Model Intercomparison Project phase 5) future scenarios run with the CHIMERE chemistry transport model (CTM) are compared to historic simulations in order to study some of the drivers governing air pollution. Here, the focus is on regional climate, anthropogenic emissions and long-range transport. Two major subdomains are explored – the European region and the Mediterranean Basin – with both areas showing high sensitivity to climate change. The Mediterranean area is explored in the context of the ChArMEx (the Chemistry Aerosol Mediterranean Experiment) project, which examines the current and future meteorological and chemical conditions of the Mediterranean area. This climate impact study covers the period from 2031 to 2100 and considers possible future scenarios in comparison with 1976 to 2005 historic simulations using three Representative Concentration Pathways (RCPs; RCP2.6, RCP4.5 and RCP8.5). A detailed analysis of total PM10 (particulate matter with a diameter smaller that 10 µm) concentrations is carried out, including the evolution of PM10 and changes to its composition. The individual effects of meteorological conditions on PM10 components are explored in these scenarios in an effort to pinpoint the meteorological parameter(s) governing each component. The anthropogenic emission impact study covers the period from 2046 to 2055 using current legislation (CLE) and maximum feasible reduction (MFR) anthropogenic emissions for the year 2050 compared with historic simulations covering the period from 1996 to 2005 and utilizing CLE2010 emissions data. Long-range transport is explored by changing the boundary conditions in the chemistry transport model over the same period as the emission impact studies. Finally, a cumulative effect analysis of these drivers is performed, and the impact of each driver on PM10 and its components is estimated. The results show that regional climate change causes a decrease in the PM10 concentrations in our scenarios (in both the European and Mediterranean subdomains), as a result of a decrease in nitrate, sulfate, ammonium and dust atmospheric concentrations in most scenarios. On the contrary, BSOA (biogenic secondary organic aerosol) displays an important increase in all scenarios, showing more pronounced concentrations for the European subdomain compared with the Mediterranean region. Regarding the relationship of different meteorological parameters to concentrations of different species, nitrate and BSOA show a strong temperature dependence, whereas sulfate is most strongly correlated with relative humidity. The temperature-dependent behavior of BSOA changes when looking at the Mediterranean subdomain, where it displays more dependence on wind speed, due to the transported nature of BSOA existing in this subdomain. A cumulative look at all drivers shows that anthropogenic emission changes overshadow changes caused by climate and long-range transport for both of the subdomains explored, with the exception of dust particles for which long-range transport changes are more influential, especially in the Mediterranean Basin. For certain species (such as sulfates and BSOA), in most of the subdomains explored, the changes caused by anthropogenic emissions are (to a certain extent) reduced by the boundary conditions and regional climate changes.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-05-25
    Description: The simulation of fine organic aerosols with CTMs (chemistry–transport models) in the western Mediterranean basin has not been studied until recently. The ChArMEx (the Chemistry-Aerosol Mediterranean Experiment) SOP 1b (Special Observation Period 1b) intensive field campaign in summer of 2013 gathered a large and comprehensive data set of observations, allowing the study of different aspects of the Mediterranean atmosphere including the formation of organic aerosols (OAs) in 3-D models. In this study, we used the CHIMERE CTM to perform simulations for the duration of the SAFMED (Secondary Aerosol Formation in the MEDiterranean) period (July to August 2013) of this campaign. In particular, we evaluated four schemes for the simulation of OA, including the CHIMERE standard scheme, the VBS (volatility basis set) standard scheme with two parameterizations including aging of biogenic secondary OA, and a modified version of the VBS scheme which includes fragmentation and formation of nonvolatile OA. The results from these four schemes are compared to observations at two stations in the western Mediterranean basin, located on Ersa, Cap Corse (Corsica, France), and at Cap Es Pinar (Mallorca, Spain). These observations include OA mass concentration, PMF (positive matrix factorization) results of different OA fractions, and 14C observations showing the fossil or nonfossil origins of carbonaceous particles. Because of the complex orography of the Ersa site, an original method for calculating an orographic representativeness error (ORE) has been developed. It is concluded that the modified VBS scheme is close to observations in all three aspects mentioned above; the standard VBS scheme without BSOA (biogenic secondary organic aerosol) aging also has a satisfactory performance in simulating the mass concentration of OA, but not for the source origin analysis comparisons. In addition, the OA sources over the western Mediterranean basin are explored. OA shows a major biogenic origin, especially at several hundred meters height from the surface; however over the Gulf of Genoa near the surface, the anthropogenic origin is of similar importance. A general assessment of other species was performed to evaluate the robustness of the simulations for this particular domain before evaluating OA simulation schemes. It is also shown that the Cap Corse site presents important orographic complexity, which makes comparison between model simulations and observations difficult. A method was designed to estimate an orographic representativeness error for species measured at Ersa and yields an uncertainty of between 50 and 85 % for primary pollutants, and around 2–10 % for secondary species.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-11-29
    Description: In the framework of the EURODELTA-Trends (EDT) modeling experiment, several chemical transport models (CTMs) were applied for the 1990–2010 period to investigate air quality changes in Europe as well as the capability of the models to reproduce observed long-term air quality trends. Five CTMs have provided modeled air quality data for 21 continuous years in Europe using emission scenarios prepared by the International Institute for Applied Systems Analysis/Greenhouse Gas – Air Pollution Interactions and Synergies (IIASA/GAINS) and corresponding year-by-year meteorology derived from ERA-Interim global reanalysis. For this study, long-term observations of particle sulfate (SO42-), total nitrate (TNO3), total ammonium (TNHx) as well as sulfur dioxide (SO2) and nitrogen dioxide (NO2) for multiple sites in Europe were used to evaluate the model results. The trend analysis was performed for the full 21 years (referred to as PT) but also for two 11-year subperiods: 1990–2000 (referred to as P1) and 2000–2010 (referred to as P2). The experiment revealed that the models were able to reproduce the faster decline in observed SO2 concentrations during the first decade, i.e., 1990–2000, with a 64 %–76 % mean relative reduction in SO2 concentrations indicated by the EDT experiment (range of all the models) versus an 82 % mean relative reduction in observed concentrations. During the second decade (P2), the models estimated a mean relative reduction in SO2 concentrations of about 34 %–54 %, which was also in line with that observed (47 %). Comparisons of observed and modeled NO2 trends revealed a mean relative decrease of 25 % and between 19 % and 23 % (range of all the models) during the P1 period, and 12 % and between 22 % and 26 % (range of all the models) during the P2 period, respectively. Comparisons of observed and modeled trends in SO42- concentrations during the P1 period indicated that the models were able to reproduce the observed trends at most of the sites, with a 42 %–54 % mean relative reduction indicated by the EDT experiment (range of all models) versus a 57 % mean relative reduction in observed concentrations and with good performance also during the P2 and PT periods, even though all the models overpredicted the number of statistically significant decreasing trends during the P2 period. Moreover, especially during the P1 period, both modeled and observational data indicated smaller reductions in SO42- concentrations compared with their gas-phase precursor (i.e., SO2), which could be mainly attributed to increased oxidant levels and pH-dependent cloud chemistry. An analysis of the trends in TNO3 concentrations indicated a 28 %–39 % and 29 % mean relative reduction in TNO3 concentrations for the full period for model data (range of all the models) and observations, respectively. Further analysis of the trends in modeled HNO3 and particle nitrate (NO3-) concentrations revealed that the relative reduction in HNO3 was larger than that for NO3- during the P1 period, which was mainly attributed to an increased availability of “free ammonia”. By contrast, trends in modeled HNO3 and NO3- concentrations were more comparable during the P2 period. Also, trends of TNHx concentrations were, in general, underpredicted by all models, with worse performance for the P1 period than for P2. Trends in modeled anthropogenic and biogenic secondary organic aerosol (ASOA and BSOA) concentrations together with the trends in available emissions of biogenic volatile organic compounds (BVOCs) were also investigated. A strong decrease in ASOA was indicated by all the models, following the reduction in anthropogenic non-methane VOC (NMVOC) precursors. Biogenic emission data provided by the modeling teams indicated a few areas with statistically significant increase in isoprene emissions and monoterpene emissions during the 1990–2010 period over Fennoscandia and eastern European regions (i.e., around 14 %–27 %), which was mainly attributed to the increase of surface temperature. However, the modeled BSOA concentrations did not linearly follow the increase in biogenic emissions. Finally, a comprehensive evaluation against positive matrix factorization (PMF) data, available during the second period (P2) at various European sites, revealed a systematic underestimation of the modeled SOA fractions of a factor of 3 to 11, on average, most likely because of missing SOA precursors and formation pathways, with reduced biases for the models that accounted for chemical aging of semi-volatile SOA components in the atmosphere.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-10-23
    Description: The simulation of fine organic aerosols with CTMs (Chemistry Transport Models) in the western Mediterranean basin has not been studied until recently. The ChArMEx (the Chemistry-Aerosol Mediterranean Experiment) SOP 2 (Special Observation Period 2) intensive field campaign in summer of 2013 gathered a large and comprehensive dataset of observations allowing the study of different aspects of the Mediterranean atmosphere including the formation of organic aerosols (OA) in 3D models. In this study, we used the CHIMERE CTM to perform simulations for the duration of the SAFMED (Secondary Aerosol Formation in the MEDiterranean) period (July to August 2013) of this campaign. In particular, we evaluated four schemes for the simulation of OA, including the CHIMERE standard scheme, the VBS (Volatility Basis Set) standard scheme with two parameterizations including aging of biogenic secondary OA, and a modified version of the VBS scheme which includes fragmentation and formation of non-volatile OA. The results for these four schemes are compared to observations at two stations in the western Mediterranean basin, located in Cap Corse (Corsica) and Cap Es Pinar (Mallorca). These observations include OA mass concentration, PMF (positive matrix factorization) results of different OA fractions, and 14C observations showing the fossil or non-fossil origins of carbonaceous particles. It is concluded that the modified VBS scheme is close to observations in all three aspects mentioned above; the standard VBS scheme without BSOA (Biogenic Secondary Organic Aerosol) aging also has a satisfactory performance in simulating the mass concentration of OA, but not for the source origin analysis comparisons. In addition, the OA sources over the western Mediterranean basin are explored. OA shows a major biogenic origin, especially at several hundred meters height from the surface; however over the Gulf of Genoa near the surface, the anthropogenic origin is of similar importance. A general assessment of other species was performed to evaluate the robustness of the simulations for this particular domain before evaluating OA simulation schemes. It is also shown that the Cap Corse site presents important orographic complexity which makes comparison between model simulations and observations difficult. A method was designed to estimate an orographic representativeness error for a list of species and yields an uncertainty of between 50–85 % for primary pollutants, and around 2–10 % for secondary species, for these species model to observations comparisons are only little impacted by orography.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-11
    Description: Organic aerosol can have important impacts on air quality and human health because of its chemical composition and its large contribution to the atmospheric fine aerosols. Simulation of this aerosol is difficult since there are many unknowns in the nature, mechanism and processes involved in the formation of these aerosols. These uncertainties become even more important in the context of a changing climate, because different mechanisms, and their representation in atmospheric models, imply different sensitivities to changes in climate variables. In this work, the effects caused by using different schemes to simulate OA are explored. Three schemes are used in this work: a molecular scheme, a standard volatility basis set (VBS) scheme with anthropogenic aging and a modified VBS scheme containing functionalization, fragmentation and formation of non-volatile SOA formation for all semi-volatile organic compounds (SVOCs). 5 years of historic and 5 years of future simulations were performed using the RCP8.5 climatic scenario. The years were chosen in a way to maximize the differences between future and historic simulations. The comparisons show that for the European area, the modified VBS scheme shows the highest relative change between future and historic simulations, while the molecular scheme shows the lowest (a factor of two lower). These changes are maximized over the summer period for biogenic SOA (BSOA) because the higher temperatures increase terpene and isoprene emissions, the major precursors of BSOA. This increase is partially off-set by a temperature induced shift of SVOCs to gas phase. This shift is indeed scheme dependent, and it is shown that it is the least pronounced for the modified VBS scheme including a full suite of aerosol aging processes, comprising also formation of non-volatile aerosol. For the Mediterranean Sea, without BVOC emissions, the OA changes are less pronounced and, at least on an annual average, more similar between different schemes. Absolute concentrations between different schemes are also different. Our results warrant further developments in organic aerosol schemes used for air quality modelling to reduce their uncertainty, including sensitivity to climate variables (temperature).
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-12-05
    Description: Multiple CMIP5 future scenarios are compared to historic simulations in order to study different drivers governing air pollution: Regional climate, anthropogenic emissions and long-range transport. Climate impact study covers the period of 2031 to 2100 for future scenarios compared to 1976 to 2005 for historic simulations, and includes three RCPs (Representative concentration pathways, RCP2.6, RCP4.5 and RCP8.5). A detailed analysis of total PM10 concentrations, its changes and also that of its components is included. The individual effects of meteorological conditions on PM10 components are explored in these scenarios in an effort to pinpoint the meteorological parameter(s) governing each component. Anthropogenic emission impact study covers the period of 2046 and 2055 with CLE2050 (Current legislation emissions for 2050) anthropogenic emissions compared to CLE2010 in historic simulations covering the period of 1996 to 2005. Long-range transport is explored by changing the initial and boundary conditions in the chemistry-transport model, these scenarios cover the same period as the emission impact studies. Finally, a cumulative effects of these drivers is performed and the contribution of each driver on PM10 and its components is calculated. The results show that, regional climate causes a decrease in PM10 concentration in our scenarios, as a result of a decrease in nitrate, sulfate, ammonium and dust in most scenarios. Meanwhile, biogenic secondary organic aerosols (BSOA) shows an important increase in all scenarios. Nitrate and BSOA show a strong dependence to temperature, while sulfates are dependent to relative humidity. A cumulative look at all drivers shows that anthropogenic emission changes overshadow changes caused by climate and long-range transport for most components except for dust, for which long-range transport changes seem to be more influential.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-10-25
    Description: Organic aerosol (OA) can have important impacts on air quality and human health because of its large contribution to atmospheric fine aerosol and its chemical composition, including many toxic compounds. Simulation of this type of aerosol is difficult, since there are many unknowns in its nature and mechanism and processes involved in its formation. These uncertainties become even more important in the context of a changing climate because different mechanisms, and their representation in atmospheric models, imply different sensitivities to changes in climate variables. In this work, the effects caused by using different schemes to simulate OA are explored. Three schemes are used in this work: (1) a molecular scheme; (2) a standard volatility basis set (VBS) scheme with anthropogenic aging; and (3) a modified VBS scheme containing functionalization, fragmentation and formation of nonvolatile secondary organic aerosol (SOA) for all semi-volatile organic compounds (SVOCs). Five years of historic and five years of future simulations were performed using the RCP8.5 climatic scenario. The years were chosen in a way to maximize the differences between future and historic simulations. The study focuses on biogenic SOA (BSOA), since the contribution of this fraction of BSOA among OA is major in both historic and future scenarios (40 % to 78 % for different schemes in historic simulations). Simulated OA and BSOA concentrations with different schemes are different, with the molecular scheme showing the highest concentrations among the three schemes. The comparisons show that for the European area, the modified VBS scheme shows the highest relative change between future and historic simulations, while the molecular scheme shows the lowest (a factor of 2 lower). These changes are largest over the summer period for BSOA because the higher temperatures increase terpene and isoprene emissions, the major precursors of BSOA. This increase is partially offset by a temperature-induced shift of SVOCs to the gas phase. This shift is indeed scheme dependent, and it is shown that it is the least pronounced for the modified VBS scheme including a full suite of aerosol aging processes, comprising also formation of nonvolatile aerosol. For the Mediterranean Sea, without BVOC emissions, the OA changes are less pronounced and, at least on an annual average, more similar between different schemes. Our results warrant further developments in organic aerosol schemes used for air quality modeling to reduce their uncertainty, including sensitivity to climate variables (temperature).
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-04-03
    Description: In the framework of the EURODELTA-Trends (EDT) modeling experiment, several chemical transport models (CTMs) were applied for the 1990–2010 period to investigate air quality changes in Europe as well as the capability of the models to reproduce observed long-term air quality trends. Five CTMs have provided modeled air quality data for twenty-one continuous years in Europe using emission scenarios prepared by IIASA/GAINS and corresponding year-by-year meteorology derived from ERA-interim global reanalysis. For this study, long-term observations of particle sulfate (SO42−), total nitrate (TNO3), total ammonium (TNHx) as well as sulfur dioxide (SO2) and nitrogen dioxide (NO2) for multiple sites in Europe were used to validate the model results. The trends analysis was performed for the full twenty-one years (referred to as PT), but also for two 11-year sub-periods: 1990–2000 (referred to as P1) and 2000–2010 (referred to as P2). The experiment revealed that the models were able to reproduce the faster decline in observed SO2 concentrations during the first decade, i.e. 1990–2000, with a 64–76 % mean relative reduction in SO2 concentrations indicated by the EDT experiment (range of all the models) versus an 82 % mean relative reduction in observed concentrations. During the second decade, P2, the models estimated a mean relative reduction in SO2 concentrations of about 34–54 %, which was also in line with that observed (47 %). Comparisons of observed and modeled NO2 trends revealed a mean relative decrease of 25 % and between 19–23 % (range of all the models) during the P1 period, and 12 % and between 22–26 % (range of all the models) during the P2 period, respectively. Comparisons of observed and modeled trends in SO42− concentrations during the P1 period indicated that the models were able to reproduce the observed trends at most of the sites, with a 42–54 % mean relative reduction indicated by the EDT experiment (range of all models) versus a 57 % mean relative reduction in observed concentrations, and with good performances also during the P2 and PT periods. Moreover, especially during the P1 period, both modeled and observational data indicated smaller reductions in SO42− concentrations compared with its gas-phase precursor (i.e. SO2), which could be mainly attributed to increased oxidant levels and pH-dependent cloud chemistry. An analysis of the trends in TNO3 concentrations indicated a 28–39 % and 29 % mean relative reduction in TNO3 concentrations for the full period for model data (range of all the models) and observations, respectively. Further analysis of the trends in modeled HNO3 and particle nitrate (NO3−) concentrations revealed that the relative reduction in HNO3 was larger than that for NO3− during the P1 period, which was mainly attributed to an increased availability of “free-ammonia”. By contrast, trends in modeled HNO3 and NO3− concentrations were more comparable during the P2 period. Also, trends of TNHx concentrations were, in general, under-predicted by all models, with worst performance for the P1 period than for P2. Trends in modeled anthropogenic and biogenic secondary organic aerosol (ASOA and BSOA) concentrations together with the trends in available emissions of biogenic volatile organic compounds (BVOCs) were also investigated. A strong decrease in ASOA was indicated by all the models, following the reduction in anthropogenic NMVOCs precursors. Biogenic emission data provided by the modeling teams indicated a few areas with statistically significant increase in isoprene emission and monoterpene emissions during the 1990–2010 period over Fennoscandia and Eastern European regions (i.e. around 14–27 %), which was mainly attributed to the increase of surface temperature. However, the modeled BSOA concentrations did not linearly follow the increase in biogenic emissions. Finally, a comprehensive evaluation against positive matrix factorization (PMF) data, available during the second period (P2) at various European sites, revealed a systematic under-estimation of the modeled SOA fractions of between a factor of 3 to 11, on average, most likely because of missing SOA precursors and formation pathways, with reduced biases for the models that accounted for chemical aging of semi-volatile SOA components in the atmosphere.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-11-01
    Print ISSN: 1352-2310
    Electronic ISSN: 1873-2844
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-10-01
    Print ISSN: 1352-2310
    Electronic ISSN: 1873-2844
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...