ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Artificial life and robotics 2 (1998), S. 41-47 
    ISSN: 1614-7456
    Keywords: Gradient-based search ; Local minima ; Chaos
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract The steepest descent search algorithm is modified in conjunction withchaos to solve the optimization problem of an unstructured search space. The problem is that given only the gradient information of the quality function at the present configuration,X(t), we must find the value of a configuration vector that minimizes the quality function. The proposed algorithm starts basically from the steepest descent search technique but at the prescribed points, i.e., local minimum points, the chaotic jump is performed by the dynamics of a chaotic neuron. Chaotic motions are mainly caused because the Gaussian function has a hysteresis as a refractoriness. An adaptation mechanism to adjust the size of the chaotic jump is also given. In order to enhance the probability of finding the global minimum, a parallel search strategy is developed. The validity of the proposed method is verified in simulation examples of the function minimization problem and the motion planning problem of a mobile robot.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-08-12
    Description: Acoustic target classification in multi-frequency echosounder data is a major interest for the marine ecosystem and fishery management since it can potentially estimate the abundance or biomass of the species. A key problem of current methods is the heavy dependence on the manual categorization of data samples. As a solution, we propose a novel semi-supervised deep learning method leveraging a few annotated data samples together with vast amounts of unannotated data samples, all in a single model. Specifically, two inter-connected objectives, namely, a clustering objective and a classification objective, optimize one shared convolutional neural network in an alternating manner. The clustering objective exploits the underlying structure of all data, both annotated and unannotated; the classification objective enforces a certain consistency to given classes using the few annotated data samples. We evaluate our classification method using echosounder data from the sandeel case study in the North Sea. In the semi-supervised setting with only a tenth of the training data annotated, our method achieves 67.6% accuracy, outperforming a conventional semi-supervised method by 7.0 percentage points. When applying the proposed method in a fully supervised setup, we achieve 74.7% accuracy, surpassing the standard supervised deep learning method by 4.7 percentage points.
    Print ISSN: 1054-3139
    Electronic ISSN: 1095-9289
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...