ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 86 (2003), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Microstructural characterizations on the (1−x)La2/3TiO3·xLaAlO3 (LTLA) system were conducted using transmission electron microscopy. The presence of La2Ti2O7 and La4Ti9O24 phases in pure La2/3TiO3 is confirmed by the electron diffraction pattern. When x= 0.1, the ordering due to the A-site vacancies could be confirmed by the presence of antiphase boundaries (APBs) and return ½(100) superlattice reflection. As xincreases, the ordering decreases and finally disappears when x= 0.6. The tilting of oxygen octahedra could be demonstrated by the presence of the ferroelastic domains in the matrix and return ½(111) and return ½(110) superlattice reflections in selected area electron diffraction patterns. In pure LaAlO3, only the antiphase tilting of oxygen octahedra is present due to the presence of return ½(111) superlattice reflection. In the LTLA system of x= 0.1, both the antiphase and in-phase tiltings of the oxygen octahedra are involved; however, in the range of x from 0.3 to 0.9, the antiphase tilting of oxygen octahedra has appeared. The growth of the ferroelastic domains is influenced by the APBs in the matrix.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 84 (2001), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Microstructural studies were conducted on the domain boundaries in Sr(Mg1/3Nb2/3)O3 (SMN) complex perovskite compound using X-ray diffractometry and transmission electron microscopy. Both the 1:2 chemical ordering of B-site cations and the tilting of oxygen octahedra were involved in SMN. SMN had a 1:2 ordered monoclinic unit cell, which was distorted by the antiphase tilting of oxygen octahedra. Two types of domain boundaries were found: the antiphase boundaries (APBs), which are not confined crystallographically, and the ferroelastic domain boundaries, which were parallel to the crystallographic planes. SMN had the superlattice reflections of type ±⅙[111] and ±½[111] in the electron diffraction patterns, which cannot be indexed in terms of the 1:2 ordered trigonal phase with only a hexagonal unit cell. The presence of the ferroelastic domains that contained both the 1:2 ordered and the antiphase tilting had been verified by a high-resolution transmission electron microscopy lattice image. The structure of SMN was well explained by a model proposed by other researchers. The formation of the 1:2 ordered domains preceded the ferroelastic domains. Normally, the growth of the ferroelastic domain is not affected by APBs, but it is interrupted by them when the driving force for growth is insufficient, resulting in the stoppage of the domains at APBs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 83 (2000), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Microstructural studies of the complex perovskite compound La(Mg2/3Nb1/3)O3 (LMN) were conducted using transmission electron microscopy (TEM) and X-ray diffractometry (XRD) at elevated temperatures. 1:1 chemical ordering of B-site cations and tilting of oxygen octahedra were observed in LMN. Three types of superlattice reflections, [1—2]{111}, [1—2]{110}, and [1—2]{100} were observed at room temperature and at 800°C in electron diffraction patterns. In the XRD experiments, the [1—2]{210} and [1—2]{300} extra peaks disappeared at temperatures 〉1200°C. However, the intensity of the superlattice [1—2]{111} peak did not change with increased temperature up to 1400°C. These results strongly indicated that the origin of superlattice reflection [1—2]{111} was different from that of the other superlattice reflections. It was mainly caused by the 1:1 chemical ordering of magnesium and niobium atoms. The TEM image observed at 800°C showed the ordered domain structures separated by the antiphase boundaries.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 83 (2000), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Microstructural studies on (1 −x)Ba(Mg1/3Nb2/3)O3–xCa(Mg1/3Nb2/3)O3 (BCMN) complex perovskite compounds, which are mixtures of Ba(Mg1/3Nb2/3)O3 (BMN) and Ca(Mg1/3Nb2/3)O3 (CMN), were conducted using scanning electron microscopy, transmission electron microscopy, and X-ray diffractometry. Pure BMN and CMN both have a 1:2 ordered structure, via the chemical ordering of B-site cations; however, the tilting of oxygen octahedra is involved in pure CMN, whose structure has a 1:2 ordered monoclinic unit cell that is characterized by (±1/6,±1/6,±1/6)-type superlattice reflections in electron diffraction patterns along the [110] zone axis that is based on a simple cubic perovskite. Studies of the morphologic differences have indicated two types of inhomogeneities in a mixture of the BCMN system: (i) a rather large-scale segregation (i.e., grain sizes of several micrometers), where the grains are separated compositionally as being barium-rich or calcium-rich, and (ii) fine-scale lamellar-type segregations 20 nm wide and 200 nm long. The segregation that is caused by Ba and Ca ions can be identified by the difference of superlattice modulations from high-resolution transmission electron microscopy lattice images.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 84 (2001), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Dielectric properties and their related microstructural characteristics in solid solutions of (1 –x)Ba(Mg1/3Nb2/3)O3–xSr(Mg1/3Nb2/3)O3 (BMN–SMN, or BSMN) were investigated by measuring the relative permittivity (ɛr), Q values, and temperature coefficient of resonator frequency (τf), and by observing microstructure using transmission electron microscopy. When the tolerance factor (t) was 〉0.99 in BSMN with composition 0 〈 x 〈 0.5, where the tilting of oxygen octahedra was not involved, the microstructure included only 1:2 ordered phase. In the region where 0.99 〉 t 〉 0.97 with 0.7 〈 x 〈 1.0, the phase due to the antiphase tilting of oxygen octahedral, the disordered phase, and the 1:2 ordered phase were also present. In a few of the grains, core–shell-type structures, whose main components were dislocations and stacking faults, were found in the solid solution of BSMN.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 84 (2001), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Microstructural studies on the domain boundaries in Ca(Mg1/3CNb2/3)O3 (CMN) complex perovskite compound were conducted using X-ray diffractometry and transmission electron microscopy. The 1:2 chemical ordering of B-site cations and the tilting of oxygen octahedra were involved in the CMN microstructure, as inferred from the presence of two types of domain boundaries. One type was the antiphase boundaries (APBs), which did not lie on a specific set of crystallographic planes. These boundaries were caused by the chemical 1:2 ordering of B-site cations, magnesium and niobium. The other type was the ferroelastic domain boundaries, which were parallel to a certain crystallographic plane. Therefore, CMN had the 1:2 ordered monoclinic unit cell distorted by the antiphase or in-phase tilting of oxygen octahedra. CMN had the mixed phases rather than the homogeneous phase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 83 (2000), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Microstructural studies of the domain boundaries in the complex perovskite compound lanthanum magnesium niobate (La[Mg2/3Nb1/3]O3, LMN) were conducted using transmission electron microscopy. Both the 1:1 chemical ordering of B-site cations and the tilting of oxygen octahedra affected the domain boundaries. Two types of domain boundaries were observed. In addition to the presence of antiphase boundaries, which were insensitive to the crystallographic planes, ferroelastic domain boundaries that were caused by the phase transition due to the tilting of oxygen octahedra also were present. In some grains, only one type of oxygen tilting was present, which resulted in a single domain in one grain. Two or three domains were observed in a grain where the walls were parallel to the {110} plane. Many domains also were observed in a grain that had boundaries whose linear characteristics were gradually reduced.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 84 (2001), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Atomic structural observations on the antiphase boundaries (APBs) in the complex barium lanthanum magnesium niobate perovskite compound Ba0.7La0.3(Mg0.43Nb0.57)O3 (BLMN), which has a 1:1 chemical ordering of B-site cations, were conducted using high-resolution transmission electron microscopy. Using APB contrast, the curved APB was determined to have a ledged structure, with a terrace that was composed of the (111) plane at an atomic level. In APBs with finite widths, microfacets on the (111) planes also were observed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 83 (2000), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The dielectric properties and their related microstructural characteristics in solid solutions of (1 —x)Ba(Mg1/3Nb2/3)O3 (BMN)—xLa(Mg2/3Nb1/3)O3 (LMN) (BLMN) were investigated by measuring the relative permittivity (ɛr), Q value, and temperature coefficient of resonator frequency (τf), and by observing the microstructure using transmission electron microscopy. The trend of variation of the temperature coefficient of the dielectric permittivity (τɛ) was the same for our solid solutions as that reported by Reaney et al. When the tolerance factor (t) was 〉1.01 in BLMN with composition x= 0 to 1.0, where the tilting of oxygen octahedra was not involved, the components of the microstructure included a disordered and transition phase as well 1:1 and 1:2 ordered phases. In the region where 1.01 〈 t 〈 0.96 with x= 0.2 to 0.7, the 1:1 order, the disorder, and the phase due to the antiphase tilting of oxygen octahedra were present. Finally, in the region where t 〈 0.96 with x= 0.7 to 1.0, the microstructure of BLMN was the same as that of the pure LMN, including the 1:1 order and the antiphase, inphase tilting of oxygen octahedra, and the antiparallel shift of A-site cations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 105-110 (Jan. 1992), p. 615-618 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...