ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-10-01
    Print ISSN: 1386-1425
    Electronic ISSN: 1873-3557
    Topics: Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-01-01
    Description: Time series are presented of radiocarbon and 13C contents in atmospheric carbon dioxide over eastern Europe (southern Poland), covering the periods 1983–1994 and 2000–2004. The carbon isotope composition was measured in biweekly composite samples of atmospheric CO2, collected about 20 m above the local ground level. The data for 2 observational sites are presented: i) city of Kraków (50°04′N, 19°55′E; 220 m asl; for 1983–1994 and 2000–2004); and ii) Kasprowy Wierch, Tatra Mountains (49°14′N, 19°56′E; 1989 m asl; for 2000–2004). The latter site is considered a regional reference station, relatively free of anthropogenic influences. During the period 1983–1994, observations in the Kraków area revealed a gradual decrease of 14C content with a broad minimum around 1991 and a small increase by about 10% in the subsequent years. δ13C also changes with time, showing a decreasing trend from approximately −9.6% in 1983, with a slope of −0.02%/yr. The observed trends for both isotopes coincide well with a substantial reduction of coal consumption in Poland and partial replacement of coal by natural gas, especially in urban regions. After 2000, the δ13C slightly increases, reaching a mean value of −10% in 2004, while Δ14C is below the reference level by ∼3.5%. Observations at Kasprowy Wierch (regional reference station) also reflect a diminishing input of fossil carbon into the regional atmosphere. The fossil component in atmospheric CO2, calculated with the aid of 14C data available for the 2 study periods, shows a reduction of anthropogenic input by a factor of 2, which is confirmed by annual statistics of coal consumption.
    Print ISSN: 0033-8222
    Electronic ISSN: 1945-5755
    Topics: Archaeology , Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-09-16
    Description: Concentration of radon (222Rn) in the near-ground atmosphere has been measured quasi-continuously from January 2005 to December 2009 at two continental sites in Europe: Heidelberg (south-west Germany) and Krakow (southern Poland). The atmosphere was sampled at ca. 30 and 20 m above the local ground. Both stations were equipped with identical instruments. Regular observations of 222Rn were supplemented by measurements of surface fluxes of this gas in the Krakow urban area, using two different approaches. The measured concentrations of 222Rn varied at both sites in a wide range, from less than 2.0 Bq m−3 to approximately 40 Bq m−3 in Krakow and 35 Bq m−3 in Heidelberg. The mean 222Rn content in Krakow, when averaged over the entire observation period, was 30% higher than in Heidelberg (5.86 ± 0.09 and 4.50 ± 0.07 Bq m−3, respectively). Distinct seasonality of 222Rn signal is visible in the obtained time series of 222Rn concentration, with higher values recorded generally during late summer and autumn. The surface 222Rn fluxes measured in Krakow also revealed a distinct seasonality, with broad maximum observed during summer and early autumn and minimum during the winter. When averaged over a 5-year observation period, the night-time surface 222Rn flux was equal to 46.8 ± 2.4 Bq m−2 h−1. Although the atmospheric 222Rn levels at Heidelberg and Krakow appeared to be controlled primarily by local factors, it was possible to evaluate the "continental effect" in atmospheric 222Rn content between both sites, related to gradual build-up of 222Rn concentration in the air masses travelling between Heidelberg and Krakow. The mean value of this build-up was equal to 0.78 ± 0.12 Bq m−3. The measured minimum 222Rn concentrations at both sites and the difference between them was interpreted in the framework of a simple box model coupled with HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) analysis of air mass trajectories. The best fit of experimental data was obtained for the mean 222Rn flux over the European continent equal to 52 Bq m−2 h−1, the mean transport velocity of the air masses within the convective mixed layer of the planetary boundary layer (PBL) on their route from the Atlantic coast to Heidelberg and Krakow equal to 3.5 m s−1, the mean rate constant of 222Rn removal across the top of the PBL equal to the 222Rn decay constant and the mean height of the convective mixed layer equal to 1600 m.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-02-10
    Description: Specific activity of 222Rn in near-ground atmosphere has been measured quasi-continuously from January 2005 to December 2009 at two continental sites in Europe: Heidelberg (south-west Germany) and Krakow (southern Poland). Atmosphere was sampled at ca. 30 m and 20 m, respectively, above the local ground. Both stations were equipped with identical instrumentation. Regular observations of 222Rn were supplemented by measurements of surface fluxes of this gas in Krakow urban area, using two entirely different approaches. Atmospheric 222Rn concentrations varied at both sites in a wide range, from less than 2 Bq m−3 to approximately 40 Bq m−3 in Krakow and ca. 35 Bq m−3 in Heidelberg. Averaged over entire observation period, the 222Rn content in Krakow was approximately 30 % higher when compared to Heidelberg (5.86 ± 0.09 Bq −3 and 4.50 ± 0.07 Bq m−3, respectively). Distinct seasonality of 222Rn signal was visible in both presented time series, with higher values recorded generally during late summer and autumn. The surface 222Rn fluxes in Krakow also revealed a distinct seasonality, with broad maximum observed during summer and early autumn and minimum during the winter. Averaged over 5 yr observation period, the night-time surface 222Rn flux was equal 46.8 ± 2.4 Bq m−2 h−1. Although the atmospheric 222Rn levels at Heidelberg and Krakow appeared to be controlled primarily by local factors, it was possible to evaluate the "continental effect" in atmospheric 222Rn content between both sites, related to the gradual build-up of 222Rn concentration in the air masses travelling between Heidelberg and Krakow. The mean value of this load was equal 0.78 ± 0.12 Bq m−3. The measured minimum 222Rn concentrations at both sites and the difference between them was interpreted in the framework of a simple box model coupled with HYSPLIT analysis of air mass trajectories. Best fit of experimental and model data was obtained for the average 222Rn flux over the European continent equal 52 Bq m−2 h−1, the mean transport velocity of the air masses within convective mixed layer of PBL on their route from the Atlantic coast to Heidelberg and Krakow equal 3.5 m s−1, the mean rate constant of 222Rn removal across the top of PBL equal to the 222Rn decay constant and the mean height of the convective mixed layer height equal 1600 m.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2005-12-16
    Description: The results of regular observations of atmospheric CO2 mixing ratios and its carbon isotope composition (δ13C, Δ14C), carried out at two continental sites located in central Europe are presented and discussed. The sites (Kasprowy Wierch, 49°14' N, 19°59' E, 1989 m a.s.l.; Krakow, 50°04' N, 19°55' E, 220 m a.s.l.), are located in two contrasting environments: (i) high-altitude mountaneous area, relatively free of anthropogenic influences, and (ii) typical urban environment with numerous local sources of carbon dioxide. Despite of relative proximity of those sites (ca. 100 km), substantial differences in both the recorded CO2 levels and their isotopic composition were detected. The CO2 mixing ratios measured in the urban atmosphere revealed quasi-permanent excess concentration of this gas when compared with near-by background atmosphere. The annual mean CO2 concentration recorded in Krakow in 2004 was almost 10% higher than that recorded at high-altitude mountain site (Kasprowy Wierch). Such effect is occuring probably in all urban centers. Carbon isotopic composition of atmospheric CO2 proved to be efficient tool for identification the surface CO2 fluxes into the atmosphere related to fossil fuel burning and their influence on the recorded levels of this gas in the local atmosphere. The available records of Δ14C for Krakow and Kasprowy Wierch suggest gradual reduction of 14C-free CO2 fluxes into the urban atmosphere of Krakow in the past several years.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-09-07
    Description: During the summer of 2018, a widespread drought developed over Northern and Central Europe. The increase in temperature and the reduction of soil moisture have influenced carbon dioxide (CO 2 ) exchange between the atmosphere and terrestrial ecosystems in various ways, such as a reduction of photosynthesis, changes in ecosystem respiration, or allowing more frequent fires. In this study, we characterize the resulting perturbation of the atmospheric CO 2 seasonal cycles. 2018 has a good coverage of European regions affected by drought, allowing the investigation of how ecosystem flux anomalies impacted spatial CO 2 gradients between stations. This density of stations is unprecedented compared to previous drought events in 2003 and 2015, particularly thanks to the deployment of the Integrated Carbon Observation System (ICOS) network of atmospheric greenhouse gas monitoring stations in recent years. Seasonal CO 2 cycles from 48 European stations were available for 2017 and 2018. Earlier data were retrieved for comparison from international databases or national networks. Here, we show that the usual summer minimum in CO 2 due to the surface carbon uptake was reduced by 1.4 ppm in 2018 for the 10 stations located in the area most affected by the temperature anomaly, mostly in Northern Europe. Notwithstanding, the CO 2 transition phases before and after July were slower in 2018 compared to 2017, suggesting an extension of the growing season, with either continued CO 2 uptake by photosynthesis and/or a reduction in respiration driven by the depletion of substrate for respiration inherited from the previous months due to the drought. For stations with sufficiently long time series, the CO 2 anomaly observed in 2018 was compared to previous European droughts in 2003 and 2015. Considering the areas most affected by the temperature anomalies, we found a higher CO 2 anomaly in 2003 (+3 ppm averaged over 4 sites), and a smaller anomaly in 2015 (+1 ppm averaged over 11 sites) compared to 2018. This article is part of the theme issue ‘Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.
    Print ISSN: 0962-8436
    Electronic ISSN: 1471-2970
    Topics: Biology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...