ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
  • 2
    Publication Date: 2018-04-19
    Description: A global picture of atmospheric aerosol vertical distribution with a high temporal resolution is of key importance not only for climate, cloud formation, and air quality research studies but also for correcting scattered radiation induced by aerosols in absorbing trace gas retrievals from passive satellite sensors. Aerosol layer height (ALH) was retrieved from the OMI 477 nm O2−O2 band and its spatial pattern evaluated over selected cloud-free scenes. Such retrievals benefit from a synergy with MODIS data to provide complementary information on aerosols and cloudy pixels. We used a neural network approach previously trained and developed. Comparison with CALIOP aerosol level 2 products over urban and industrial pollution in eastern China shows consistent spatial patterns with an uncertainty in the range of 462–648 m. In addition, we show the possibility to determine the height of thick aerosol layers released by intensive biomass burning events in South America and Russia from OMI visible measurements. A Saharan dust outbreak over sea is finally discussed. Complementary detailed analyses show that the assumed aerosol properties in the forward modelling are the key factors affecting the accuracy of the results, together with potential cloud residuals in the observation pixels. Furthermore, we demonstrate that the physical meaning of the retrieved ALH scalar corresponds to the weighted average of the vertical aerosol extinction profile. These encouraging findings strongly suggest the potential of the OMI ALH product, and in more general the use of the 477 nm O2−O2 band from present and future similar satellite sensors, for climate studies as well as for future aerosol correction in air quality trace gas retrievals.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-03-08
    Description: This paper presents an exploratory study on the aerosol layer height (ALH) retrieval from the OMI 477 nm O2 − O2 spectral band. We have developed algorithms based on the multilayer perceptron (MLP) neural network (NN) approach and applied them to 3-year (2005–2007) OMI cloud-free scenes over north-east Asia, collocated with MODIS Aqua aerosol product. In addition to the importance of aerosol altitude for climate and air quality objectives, our long-term motivation is to evaluate the possibility of retrieving ALH for potential future improvements of trace gas retrievals (e.g. NO2, HCHO, SO2) from UV–visible air quality satellite measurements over scenes including high aerosol concentrations. This study presents a first step of this long-term objective and evaluates, from a statistic point of view, an ensemble of OMI ALH retrievals over a long time period of 3 years covering a large industrialized continental region. This ALH retrieval relies on the analysis of the O2 − O2 slant column density (SCD) and requires an accurate knowledge of the aerosol optical thickness, τ. Using MODIS Aqua τ(550 nm) as a prior information, absolute seasonal differences between the LIdar climatology of vertical Aerosol Structure for space-based lidar simulation (LIVAS) and average OMI ALH, over scenes with MODIS τ(550 nm) ≥ 1. 0, are in the range of 260–800 m (assuming single scattering albedo ω0 = 0. 95) and 180–310 m (assuming ω0 = 0. 9). OMI ALH retrievals depend on the assumed aerosol single scattering albedo (sensitivity up to 660 m) and the chosen surface albedo (variation less than 200 m between OMLER and MODIS black-sky albedo). Scenes with τ ≤ 0. 5 are expected to show too large biases due to the little impact of particles on the O2 − O2 SCD changes. In addition, NN algorithms also enable aerosol optical thickness retrieval by exploring the OMI reflectance in the continuum. Comparisons with collocated MODIS Aqua show agreements between −0. 02  ±  0. 45 and −0. 18  ±  0. 24, depending on the season. Improvements may be obtained from a better knowledge of the surface albedo and higher accuracy of the aerosol model. Following the previous work over ocean of Park et al.(2016), our study shows the first encouraging aerosol layer height retrieval results over land from satellite observations of the 477 nm O2 − O2 absorption spectral band.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-02-01
    Description: We present a 3-D climatology of the desert dust distribution over South and East Asia derived using CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) data. To distinguish desert dust from total aerosol load we apply a methodology developed in the framework of EARLINET (European Aerosol Research Lidar Network). The method involves the use of the particle linear depolarization ratio and updated lidar ratio values suitable for Asian dust, applied to multiyear CALIPSO observations (January 2007–December 2015). The resulting dust product provides information on the horizontal and vertical distribution of dust aerosols over South and East Asia along with the seasonal transition of dust transport pathways. Persistent high D_AOD (dust aerosol optical depth) values at 532 nm, of the order of 0.6, are present over the arid and semi-arid desert regions. Dust aerosol transport (range, height and intensity) is subject to high seasonality, with the highest values observed during spring for northern China (Taklimakan and Gobi deserts) and during summer over the Indian subcontinent (Thar Desert). Additionally, we decompose the CALIPSO AOD (aerosol optical depth) into dust and non-dust aerosol components to reveal the non-dust AOD over the highly industrialized and densely populated regions of South and East Asia, where the non-dust aerosols yield AOD values of the order of 0.5. Furthermore, the CALIPSO-based short-term AOD and D_AOD time series and trends between January 2007 and December 2015 are calculated over South and East Asia and over selected subregions. Positive trends are observed over northwest and east China and the Indian subcontinent, whereas over southeast China trends are mostly negative. The calculated AOD trends agree well with the trends derived from Aqua MODIS (Moderate Resolution Imaging Spectroradiometer), although significant differences are observed over specific regions.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-01-02
    Description: Satellite retrieval of vertical column densities (VCDs) of tropospheric nitrogen dioxide (NO2) is critical for NOx pollution and impact evaluation. For regions with high aerosol loadings, the retrieval accuracy is greatly affected by whether aerosol optical effects are treated implicitly (as additional “effective” clouds) or explicitly, among other factors. Our previous POMINO algorithm explicitly accounts for aerosol effects to improve the retrieval, especially in polluted situations over China, by using aerosol information from GEOS-Chem simulations with further monthly constraints by MODIS/Aqua aerosol optical depth (AOD) data. Here we present a major algorithm update, POMINO v1.1, by constructing a monthly climatological dataset of aerosol extinction profiles, based on level 2 CALIOP/CALIPSO data over 2007–2015, to better constrain the modeled aerosol vertical profiles. We find that GEOS-Chem captures the month-to-month variation in CALIOP aerosol layer height (ALH) but with a systematic underestimate by about 300–600 m (season and location dependent), due to a too strong negative vertical gradient of extinction above 1 km. Correcting the model aerosol extinction profiles results in small changes in retrieved cloud fraction, increases in cloud-top pressure (within 2 %–6 % in most cases), and increases in tropospheric NO2 VCD by 4 %–16 % over China on a monthly basis in 2012. The improved NO2 VCDs (in POMINO v1.1) are more consistent with independent ground-based MAX-DOAS observations (R2=0.80, NMB = −3.4 %, for 162 pixels in 49 days) than POMINO (R2=0.80, NMB = −9.6 %), DOMINO v2 (R2=0.68, NMB = −2.1 %), and QA4ECV (R2=0.75, NMB = −22.0 %) are. Especially on haze days, R2 reaches 0.76 for POMINO v1.1, much higher than that for POMINO (0.68), DOMINO v2 (0.38), and QA4ECV (0.34). Furthermore, the increase in cloud pressure likely reveals a more realistic vertical relationship between cloud and aerosol layers, with aerosols situated above the clouds in certain months instead of always below the clouds. The POMINO v1.1 algorithm is a core step towards our next public release of the data product (POMINO v2), and it will also be applied to the recently launched S5P-TROPOMI sensor.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-01-25
    Description: Global mapping of satellite tropospheric NO2 vertical column density (VCD), a key gas in air quality monitoring, requires accurate retrievals over complex urban and industrialized areas and under any atmospheric conditions. The high abundance of aerosol particles in regions dominated by anthropogenic fossil fuel combustion, e.g. megacities, and/or biomass-burning episodes, affects the space-borne spectral measurement. Minimizing the tropospheric NO2 VCD biases caused by aerosol scattering and absorption effects is one of the main retrieval challenges from air quality satellite instruments. In this study, the reference Ozone Monitoring Instrument (OMI) DOMINO-v2 product was reprocessed over cloud-free scenes, by applying new aerosol correction parameters retrieved from the 477 nm O2−O2 band, over eastern China and South America for 2 years (2006–2007). These new parameters are based on two different and separate algorithms developed during the last 2 years in view of an improved use of the OMI 477 nm O2−O2 band: the updated OMCLDO2 algorithm, which derives improved effective cloud parameters, the aerosol neural network (NN), which retrieves explicit aerosol parameters by assuming a more physical aerosol model. The OMI aerosol NN is a step ahead of OMCLDO2 because it primarily estimates an explicit aerosol layer height (ALH), and secondly an aerosol optical thickness τ for cloud-free observations. Overall, it was found that all the considered aerosol correction parameters reduce the biases identified in DOMINO-v2 over scenes in China with high aerosol abundance dominated by fine scattering and weakly absorbing particles, e.g. from [-20%:-40%] to [0 %:20 %] in summertime. The use of the retrieved OMI aerosol parameters leads in general to a more explicit aerosol correction and higher tropospheric NO2 VCD values, in the range of [0 %:40 %], than from the implicit correction with the updated OMCLDO2. This number overall represents an estimation of the aerosol correction strategy uncertainty nowadays for tropospheric NO2 VCD retrieval from space-borne visible measurements. The explicit aerosol correction theoretically includes a more realistic consideration of aerosol multiple scattering and absorption effects, especially over scenes dominated by strongly absorbing particles, where the correction based on OMCLDO2 seems to remain insufficient. However, the use of ALH and τ from the OMI NN aerosol algorithm is not a straightforward operation and future studies are required to identify the optimal methodology. For that purpose, several elements are recommended in this paper. Overall, we demonstrate the possibility of applying a more explicit aerosol correction by considering aerosol parameters directly derived from the 477 nm O2−O2 spectral band, measured by the same satellite instrument. Such an approach can, in theory, easily be transposed to the new-generation of space-borne instruments (e.g. TROPOMI on board Sentinel-5 Precursor), enabling a fast reprocessing of tropospheric NO2 data over cloud-free scenes (cloudy pixels need to be filtered out), as well as for other trace gas retrievals (e.g. SO2, HCHO).
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-11-07
    Description: A global picture of atmospheric aerosol vertical distribution with a high temporal resolution is of key importance not only for climate, cloud formation and air quality research studies, but also for correcting aerosol radiation effect in absorbing trace gas retrievals from passive satellite sensors. Aerosol layer height (ALH) was retrieved from the OMI 477 nm O2−O2 band and its spatial pattern evaluated over selected cloud-free scenes. Such retrievals benefit from a synergy with MODIS data to provide complementary information on aerosols and cloudy pixels. We used a neural network approach previously trained and developed. Comparison with CALIOP aerosol level 2 products over urban and industrial pollution in east China shows consistent spatial patterns with an uncertainty in the range of 462–648 m. In addition, we show the possibility to determine the height of thick aerosol layers released by intensive biomass burning events in South-America and Russia, and of a Saharan dust outbreak over sea from OMI visible measurements. Complementary detailed analyses show that the assumed aerosol properties in the modeling are the key factors affecting the accuracy of the results, together with potential cloud residuals in the observation pixels. Furthermore, we demonstrate that the physical meaning of the retrieved ALH scalar corresponds to the weighted average of the vertical aerosol extinction profile. These encouraging findings strongly suggest the potential of the OMI ALH product, and in more general the use of the 477 nm O2−O2 band from present and future similar satellite sensors, for climate studies as well as for future aerosol correction in air quality trace gas retrievals.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-07-26
    Description: Global mapping of satellite tropospheric NO2 vertical column density (VCD), a key gas in air quality monitoring, requires accurate retrievals over complex urban and industrialized areas. The high abundance of aerosol particles in regions dominated by anthropogenic fossil fuel combustion, mega-cities and biomass burning affects the space-borne spectral measurement. Minimizing the tropospheric NO2 VCD biases under such conditions are one of the main challenges for the retrieval from air quality satellite instruments. In this study, reference Ozone Monitoring Instrument (OMI) DOMINO-v2 product was reprocessed over cloud-free scenes, by applying new aerosol correction parameters retrieved from the 477nm O2-O2 band, over east China and South America for 2 years (2006–2007). These new parameters are based on two different and separate algorithms developed during the last two years in view of an improved use of the 477nm O2-O2 band: (1) the updated OMCLDO2 algorithm which derives improved effective cloud parameters, (2) the aerosol neural network (NN) giving explicit aerosol parameters by assuming a more physical aerosol model. The OMI aerosol NN is a step ahead to OMCLDO2 by retrieving primarily an explicit aerosol layer height (ALH), and secondly an aerosol optical thickness τ for cloud-free observations. Overall, it was found that all the considered aerosol correction parameters reduce the biases identified in DOMINO-v2 over scenes in China with high aerosol abundance and scattering particles: e.g. from [−20:−40]% to [0:20]% in summertime. The use of the retrieved OMI aerosol parameters leads in general to a more explicit aerosol correction and higher tropospheric NO2 VCD values, in the range of [0:40]%, than from the implicit correction with the updated OMCLDO2. This number overall represents an estimation of the aerosol correction strategy uncertainty nowadays for tropospheric NO2 VCD retrieval from space-borne visible measurements. The explicit aerosol correction theoretically includes more realistic aerosol multiple scattering and absorption effects, especially over scenes dominated by strongly absorbing particles, where the correction based on OMCLDO2 seems to remain insufficient. However, the use of ALH and τ from the OMI NN aerosol algorithm is not a straightforward operation and future studies are required to identify the optimal methodology. Several elements to be considered are recommended in this paper. Overall, we demonstrate the possibility to apply a more explicit aerosol correction by considering aerosol parameters directly derived from the 477nm O2-O2 spectral band, measured by the same satellite instrument. Such an approach can, in theory, easily be transposed to the new-generation of space-borne instruments (e.g. TROPOMI on-board Sentinel-5 Precursor), enabling a fast reprocessing of tropospheric NO2 data over cloud-free scenes (cloudy pixels need to be filtered out), as well as for other trace gas retrievals (e.g. SO2, HCHO).
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-09-07
    Description: We present a 3-D climatology of the desert dust distribution over South-East Asia derived using CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) data. To distinguish desert dust from total aerosol load we apply a methodology developed in the framework of EARLINET (European Aerosol Research Lidar Network), the particle linear depolarization ratio and updated lidar ratio values suitable for Asian dust, on multiyear CALIPSO observations (01/2007–12/2015). The resulting dust product provides information on the horizontal and vertical distribution of dust aerosols over SE (South-East) Asia along with the seasonal transition of dust transport pathways. Persistent high D_AOD (Dust Aerosol Optical Depth) values, of the order of 0.6, are present over the arid and semi-arid desert regions. Dust aerosol transport (range, height and intensity) is subject to high seasonality, with highest values observed during spring for northern China (Taklimakan/Gobi deserts) and during summer over the Indian subcontinent (Thar Desert). Additionally we decompose the CALIPSO AOD (Aerosol Optical Depth) into dust and non-dust aerosol components to reveal the non-dust AOD over the highly industrialized and densely populated regions of SE Asia, where the non-dust aerosols yield AOD values of the order of 0.5. Furthermore, the CALIPSO-based short-term AOD and D_AOD time series and trends between 01/2007 and 12/2015 are calculated over SE Asia and over selected sub-regions. Positive trends are observed over northwest and east China and the Indian subcontinent, whereas over southeast China are mostly negative. The calculated AOD trends agree well with the trends derived from Aqua/MODIS (Moderate Resolution Imaging Spectroradiometer), although significant differences are observed over specific regions.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-03-07
    Description: Satellite retrieval of vertical column densities (VCDs) of tropospheric nitrogen dioxide (NO2) is critical for NOx pollution and impact evaluation. For regions with high aerosol loadings, the retrieval accuracy is greatly affected by whether aerosol optical effects are treated implicitly (as additional effective clouds) or explicitly, among other factors. Our previous POMINO algorithm explicitly accounts for aerosol effects to improve the retrieval especially in polluted situations over China, by using aerosol information from GEOS-Chem simulations with further monthly constraint by MODIS/Aqua AOD data. This study updates the retrieval algorithm to POMINO v1.1, by constructing a monthly climatological dataset of aerosol extinction profiles, based on Level-2 CALIOP/CALIPSO data over 2007–2015, to better constrain the modeled aerosol profiles. We find that GEOS-Chem captures the month-to-month variation of CALIOP aerosol layer height but with a systematic underestimate by about 300–600m (season and location dependent), due to a too strong vertical gradient of extinction above 1km. Correcting the model aerosol extinction profiles results in small changes in retrieved cloud fraction, increases in cloud top pressure (within 2–6% in most cases), and increases in tropospheric NO2 VCD by 4–16% over China on a monthly basis in 2012. The improved NO2 VCDs (in POMINO v1.1) are more consistent with independent ground-based MAX-DOAS observations (R2 = 0.80, NMB = −3.4%) than POMINO (R2 = 0.80, NMB = −9.6%) and DOMINO v2 (R2 = 0.68, NMB = −2.1%) are. Especially on haze days, R2 reaches 0.76 for POMINO v1.1, much higher than that for POMINO (0.68) and DOMINO v2 (0.38). Furthermore, the increase in cloud pressure likely reveals a more realistic vertical relationship between cloud and aerosol layers, with aerosols situated above the clouds in certain months instead of always below the clouds. Our POMINO v1.1 algorithm will be applied to the recently launched TropOMI sensor.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...