ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 37 (1990), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: . Studies of in vitro interactions between Plasmodium berghei sporozoites and peritoneal macrophages from mice and rats were performed. A videomicroscopic analysis was made of interactions observed by phase-contrast microscopy. Our results showed a diversity of dynamic interactions between sporozoites and macrophages that included no interaction, surface interaction without sporozoite interiorization, active sporozoite penetration, active penetration with subsequent sporozoite escape, macrophage destruction, and the formation of “tethers” or web-like structures by sporozoites that had actively invaded macrophages. Sporozoites are thus clearly capable of actively invading host macrophages and are not restricted to being phagocytosed for interiorization. The formation of “tethers” by the moving sporozoite might function in vivo by anchoring the sporozoite to the cells lining the lumen of the liver sinusoid. Active sporozoite motility appears to be a functional phenomenon involved in sporozoite invasion of host liver cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-11-13
    Description: Introduction: Venetoclax (VEN) is approved for the treatment of acute myeloid leukemia (AML) in combination with hypomethylating agents (HMAs) or low-dose cytarabine and commonly used for patients (pts) unfit for intensive chemotherapy. Prophylaxis with triazole antifungals (azoles) during induction treatment in pts with AML has decreased mortality and is the standard of care for pts receiving treatment regimens associated with prolonged myelosuppression (Cornely et al, 2007). Azoles inhibit CYP3A4 (CYP3A4i), the enzyme responsible for the metabolism of VEN, and p-glycoprotein to varying degrees, which VEN is a substrate. Based on this interaction and the results of a small pharmacokinetic study, significant VEN dosage reductions are recommended (Agarwal et al, 2017). Little real-world data exists to demonstrate the tolerability of VEN in combination with azoles during induction treatment with VEN and HMAs. Methods: All pts with newly diagnosed AML treated at our institution with VEN and HMAs from 11/2014-1/2019 were retrospectively reviewed. Pts were treated as standard of care or as part of clinical trial in combination with azacitidine (NCT02203773) or decitabine (NCT03404193; NCT02203773). Pts who received concomitant antifungal for 〉5 days while also receiving VEN for 〉7 days were included. VEN 100mg daily with posaconazole or voriconazole (strong CYP3A4i) and VEN 200mg daily with isavuconazole or fluconazole (moderate CYP3A4i) were considered 400mg equivalent dosages. Higher doses of VEN in these combinations were considered 〉VEN 400mg equivalent. To determine the clinical impact of concomitant azoles, time to absolute neutrophil count (ANC) and platelet (PLT) recovery after induction was analyzed, in addition to response rates, episodes of febrile neutropenia (FN) and documented infections. Results:One-hundred twenty-one pts treated with HMA and VEN were identified (Table 1). The median age was 72 years (48-86) and 35% were 〉 75 years. Forty pts (33%) had secondary AML, and 10% had therapy-related AML. Most were treated with decitabine 20mg/m2 administered for 10 days (67%) or 5 (22%). VEN was administered for a median of 23 days (7-30) at a 400mg daily dose equivalent in 74 pts (62%) and 〉400mg dose equivalent in 40 pts (33%). Eighty-nine (74%) received a concomitant azole with VEN including posaconazole (38%), isavuconazole (21%), voriconazole (13%), or fluconazole (2%). Following induction therapy with VEN and HMA, 37% achieved a complete response (CR) and 22% achieved a CR with incomplete blood count recovery (CRi). An additional 10% achieved a morphologic leukemia free state (MLFS) (Table 2). Prior to cycle 2, 55% of pts achieved ANC〉500 cells/mm3 and 64% achieved PLT〉50,000 cells/mm3 after a median of 34 days and 24 days, respectively. No difference in response was observed based on VEN dosage or duration (Table 3). Pts achieving CR/CRi received VEN for a median of 22 days (7-29), and 38% at the 400mg equivalent VEN dosage with an azole. When analyzing VEN dosage by the use of an azole, duration of neutropenia (ANC0.05) (Table 4). Number of pts achieving PLT〉50,000 cells/mm3 was not affected by concomitant antifungal or VEN dosage, but duration of thrombocytopenia was. Time to PLT〉50,000 cells/mm3 was significantly longer for pts receiving VEN 400mg equivalent with an azole (25 vs 20 days, p=0.01) as well as time to PLT〉100,000 cells/mm3 (27 vs 22 days, p=0.03). Despite prolonged cytopenias, all pts receiving the VEN 400mg equivalent dosage had similar rates of FN, documented infections, and hospital duration regardless of the use of an azole (Table 4). Those receiving 〉400mg VEN equivalent had numerically higher rates of FN, infections, and duration of hospitalization. Conclusion: The combination of VEN with HMA is an effective treatment option in pts with newly diagnosed AML. VEN is associated with significant myelosuppression which can be enhanced by concomitant CYP3A4i, such as the azoles. The combination of VEN and azoles resulted in prolonged cytopenias, namely thrombocytopenia, compared to the use of VEN without an azole. This did not result in higher rates of FN, infections, or duration of hospitalization, therefore the concomitant use of VEN and azole appear to provide a clinically safe and effective therapeutic regimen. Higher doses of VEN do not appear to be advantageous in this setting. Disclosures DiNardo: daiichi sankyo: Honoraria; jazz: Honoraria; syros: Honoraria; medimmune: Honoraria; notable labs: Membership on an entity's Board of Directors or advisory committees; abbvie: Consultancy, Honoraria; agios: Consultancy, Honoraria; celgene: Consultancy, Honoraria. Maiti:Celgene: Other: research funding. Kadia:Celgene: Research Funding; Pfizer: Membership on an entity's Board of Directors or advisory committees, Research Funding; Jazz: Membership on an entity's Board of Directors or advisory committees, Research Funding; Bioline RX: Research Funding; BMS: Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Genentech: Membership on an entity's Board of Directors or advisory committees; Pharmacyclics: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees; AbbVie: Consultancy, Research Funding. Borthakur:Polaris: Research Funding; Strategia Therapeutics: Research Funding; Tetralogic Pharmaceuticals: Research Funding; FTC Therapeutics: Membership on an entity's Board of Directors or advisory committees; Xbiotech USA: Research Funding; Bayer Healthcare AG: Research Funding; AstraZeneca: Research Funding; BMS: Research Funding; Eli Lilly and Co.: Research Funding; Oncoceutics, Inc.: Research Funding; PTC Therapeutics: Consultancy; NKarta: Consultancy; BioLine Rx: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Cyclacel: Research Funding; GSK: Research Funding; Janssen: Research Funding; Incyte: Research Funding; AbbVie: Research Funding; Argenx: Membership on an entity's Board of Directors or advisory committees; Eisai: Research Funding; Novartis: Research Funding; Cantargia AB: Research Funding; Arvinas: Research Funding; Oncoceutics: Research Funding; BioTheryX: Membership on an entity's Board of Directors or advisory committees; Merck: Research Funding; Agensys: Research Funding. Pemmaraju:affymetrix: Research Funding; sagerstrong: Research Funding; Daiichi-Sankyo: Research Funding; plexxikon: Research Funding; novartis: Consultancy, Research Funding; Stemline Therapeutics: Consultancy, Honoraria, Research Funding; cellectis: Research Funding; celgene: Consultancy, Honoraria; samus: Research Funding; abbvie: Consultancy, Honoraria, Research Funding; mustangbio: Consultancy, Research Funding; incyte: Consultancy, Research Funding. Sasaki:Pfizer: Consultancy; Otsuka: Honoraria. Ravandi:Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Menarini Ricerche: Research Funding; Cyclacel LTD: Research Funding; Selvita: Research Funding; Xencor: Consultancy, Research Funding; Macrogenix: Consultancy, Research Funding. Kantarjian:Astex: Research Funding; AbbVie: Honoraria, Research Funding; Pfizer: Honoraria, Research Funding; Immunogen: Research Funding; Takeda: Honoraria; Agios: Honoraria, Research Funding; Amgen: Honoraria, Research Funding; BMS: Research Funding; Cyclacel: Research Funding; Daiichi-Sankyo: Research Funding; Novartis: Research Funding; Jazz Pharma: Research Funding; Actinium: Honoraria, Membership on an entity's Board of Directors or advisory committees; Ariad: Research Funding. Konopleva:Astra Zeneca: Research Funding; Reata Pharmaceuticals: Equity Ownership, Patents & Royalties; Ablynx: Research Funding; Agios: Research Funding; Kisoji: Consultancy, Honoraria; Ascentage: Research Funding; Calithera: Research Funding; Stemline Therapeutics: Consultancy, Honoraria, Research Funding; Genentech: Honoraria, Research Funding; Forty-Seven: Consultancy, Honoraria; F. Hoffman La-Roche: Consultancy, Honoraria, Research Funding; Amgen: Consultancy, Honoraria; Cellectis: Research Funding; AbbVie: Consultancy, Honoraria, Research Funding; Eli Lilly: Research Funding.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-05
    Description: Background: The combination of low intensity therapy with InO improved outcome compared to intensive chemotherapy and to single agent InO in Salvage 1. The sequential addition of blina may allow the administration of weekly lower dose of InO and distancing allogeneic stem cell transplant (ASCT) from the last dose of InO, while deepening the minimal residual disease response. This will lead to less veno-occlusive disease (VOD) and better long-term efficacy. The aim of this study is to evaluate the outcome of pts in first relapse treated with this combination. Methods: The mini-hyper-CVD (cycles 1, 3, 5, 7) comprised cyclophosphamide (150 mg/m2 every 12 h on days 1-3), vincristine (2 mg flat dose on days 1 and 8), and dexamethasone (20 mg on days 1-4 and days 11-14) without anthracycline. Even cycles (cycles 2, 4, 6, 8) comprised methotrexate (250 mg/m2 on day 1) and cytarabine (0.5 g/m2 given every 12 h on days 2 and 3). Rituximab and intrathecal chemotherapy were given for first 4 courses. InO was originally given on day 3 of the first four cycles at the dose of 1.3-1.8 mg/m2 at cycle 1, followed by 1.0-1.3 mg/m2 in subsequent cycles. After 38 pts were treated, an amendment was made to incorporate 4 cycles of blina after 4 cycles of mini-hyper-CVD + InO. InO was given on days 2 and 8 at the dose of 0.6 and 0.3 mg/m2 at cycle 1, respectively, followed by days 2 and 8 at the dose of 0.3 and 0.3 mg/m2 at subsequent cycles; blina was continuously infused over 28 days every 42-day cycle for 4 cycles. The decision to proceed with ASCT was based on the discretion of the treating physician after discussion with the pt. Results: From 2/2013 to 9/2019, 65 pts were enrolled and received first salvage therapy including 27 pts with mini-hyper-CVD + InO + blina. Patient characteristics and outcome are summarized in Table 1. The median age at diagnosis was 39 years (range, 18-87). Among 65 pts, 8 (12%) pts had primary refractory disease; 25 (38%), CR1 duration less than 12 months. 7 (11%) pts had prior history of ASCT. The overall response rate was 91% (CR, 66%, CRp/CRi, 25%). These rates were 100% in pts with primary refractory disease (CR 100%); 84 % in pts with CR1 duration 12 months (CR 63%, CRi/CRp 31%) (Table 2). Among 56 evaluable pts for minimal residual disease (MRD) assessment at morphologic response and 57 overall, 57% of pts achieved negative MRD by multicolor flow cytometry at response and 88% overall. Among 59 who achieved remission, 26 (44%) relapsed, 35 (59%) underwent allogeneic SCT in CR2, and 6 (9%) died in CR/CRp. Overall, 6 pts (9%) developed VOD; 4 after subsequent ASCT. The rate of VOD was 5/38 (13%) in pts who did not receive blina. In contrast, only 1 case of VOD was observed among the 27 pts (4%) who received the weekly lower dose of InO and sequential addition of blina; this pt had VOD post ASCT in CR2. With a median follow-up of 36 months (range, 1-87 months), 27 pts (42%) were alive, 21 of whom (32%) were in CR and MRD negative status. The median CR duration (CRD) and overall survival (OS) were 13 and 16.5 months, respectively. The estimated 3-year CRD and OS rates were 25% and 42%, respectively. Using the IPTW analysis, compared to a similar historical cohort of pts treated with standard salvage chemotherapy (n=77), the mini-hyper-CVD + InO with or without blina (n=58) resulted in significantly improved survival (P
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...