ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Flight efficiency and reduction of flight delays are among the primary goals of NextGen. In this paper, we propose a concept of shared airspace where departures fly across arrival flows, provided gaps are available in these flows. We have explored solutions to separate departures temporally from arrival traffic and pre-arranged procedures to support controllers' decisions. We conducted a Human-in-the-Loop simulation and assessed the efficiency and safety of 96 departures from the San Jose airport (SJC) climbing across the arrival airspace of the Oakland and San Francisco arrival flows. In our simulation, the SJC tower had a tool to schedule departures to fly across predicted gaps in the arrival flow. When departures were mistimed and separation could not be ensured, a safe but less efficient route was provided to the departures to fly under the arrival flows. A coordination using a point-out procedure allowed the arrival controller to control the SJC departures right after takeoff. We manipulated the accuracy of departure time (accurate vs. inaccurate) as well as which sector took control of the departures after takeoff (departure vs. arrival sector) in a 2x2 full factorial plan. Results show that coordination time decreased and climb efficiency increased when the arrival sector controlled the aircraft right after takeoff. Also, climb efficiency increased when the departure times were more accurate. Coordination was shown to be a critical component of tactical operations in shared airspace. Although workload, coordination, and safety were judged by controllers as acceptable in the simulation, it appears that in the field, controllers would need improved tools and coordination procedures to support this procedure.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN10964 , Digital Avionics System Conference 2013; Oct 06, 2013 - Oct 10, 2013; Syracuse, NY; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: LaGuardia (LGA) departure delay was identified by the stakeholders and subject matter experts as a significant bottleneck in the New York metropolitan area. Departure delay at LGA is primarily due to dependency between LGA's arrival and departure runways: LGA departures cannot begin takeoff until arrivals have cleared the runway intersection. If one-in one-out operations are not maintained and a significant arrival-to-departure imbalance occurs, the departure backup can persist through the rest of the day. At NASA Ames Research Center, a solution called "Departure-sensitive Arrival Spacing" (DSAS) was developed to maximize the departure throughput without creating significant delays in the arrival traffic. The concept leverages a Terminal Sequencing and Spacing (TSS) operations that create and manage the arrival schedule to the runway threshold and added an interface enhancement to the traffic manager's timeline to provide the ability to manually adjust inter-arrival spacing to build precise gaps for multiple departures between arrivals. A more complete solution would include a TSS algorithm enhancement that could automatically build these multi-departure gaps. With this set of capabilities, inter-arrival spacing could be controlled for optimal departure throughput. The concept was prototyped in a human-in-the- loop (HITL) simulation environment so that operational requirements such as coordination procedures, timing and magnitude of TSS schedule adjustments, and display features for Tower, TRACON and Traffic Management Unit could be determined. A HITL simulation was conducted in August 2014 to evaluate the concept in terms of feasibility, controller workload impact, and potential benefits. Three conditions were tested, namely a Baseline condition without scheduling, TSS condition that schedules the arrivals to the runway threshold, and TSS+DSAS condition that adjusts the arrival schedule to maximize the departure throughput. The results showed that during high arrival demand period, departure throughput could be incrementally increased under TSS and TSS+DSAS conditions without compromising the arrival throughput. The concept, operational procedures, and summary results were originally published in ATM20151 but detailed results were omitted. This paper expands on the earlier paper to provide the detailed results on throughput, conformance, safety, flight time/distance, etc. that provide extra insights into the feasibility and the potential benefits on the concept.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN32587 , Aviation 2016; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-20
    Description: This document serves as a user manual for the STBO Client in Charlotte Douglas International Airport Air Traffic Control Tower. It describes the elements of the full interface and provides explanations for how to interact with the interface. The document also provides instructions for entering Traffic Management Initiatives, scheduling runway utilization changes, and closing runways. There are also detailed instructions for how to negotiate Approval Request (APREQ) release times using the STBO Client.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN60591
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-20
    Description: Airports with shared runway operations between arrivals and departures can experience severe departure gridlock and delays during a heavy arrival push due to insufficient gaps in the arrival stream for aircraft to depart. The problem is accentuated in situations when a large gap in the arrival spacing has to be created at the last minute due to wake vortex separation requirements. At LaGuardia airport, wake vortex separation problems arise when a heavy jet, such as a B757, departing on Runway 31 needs additional spacing between arrivals on Runway 22. A standard solution for controllers in many airports in situations such as this is to extend the downwind leg of arrival aircraft to create extra space between the arrivals. The question addressed in this paper is how such route extensions would work with terminal scheduling operations, namely (1) the automated Terminal Sequencing and Spacing (TSS) tools and (2) a new scheduling tool which increases the availability of gaps for departure aircraft (Departure Sensitive Arrival Spacing or DSAS). In a simulated LaGuardia airport (LGA) Terminal Radar Approach Control (TRACON) airspace, two new RNAV arrival routes were created along with extensions to these routes. The arrival route from the south had a downwind leg extension near the airport in the final sector. The arrival route from the north had an extension in a feeder sector further from the airport. An exploratory one-hour run with the route extensions was compared to an hour run without the extensions. Topics included in the paper are 1) how the route extensions were developed, 2) a procedure outlining how the aircraft could be scheduled to the extensions and who would do it, and 3) the results of the exploratory run compared to the original run without the extensions. The results indicated that the extended downwind leg route helped to create a B757 departure gap in the middle of a packed arrival stream, resulting in a reduction of 11 minutes in average wait time for the B757s, but at a cost of increased controller self-reported workload from low to moderate.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN26430 , Digital Avionics Systems Conference (DASC); Sep 13, 2015 - Sep 18, 2015; Prague, Czech Republic; Czechoslovakia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-20
    Description: In current-day Terminal Radar Approach Control (TRACON) operations, departure and arrival controllers maintain separate and dedicated airspace for their respective traffic flows. Although this practice has obvious safety features, it also leads to inefficiencies; for example, departure aircraft may be routinely capped beneath arrival airspace. With the right decision-support and coordination tools, departures could continue to climb through arrival airspace when sufficient gaps exist. Previous studies of shared airspace have examined pre-arranged coordination procedures, as well as tools that gave feedback to the controllers on where gaps between arrivals were located and whether the departure aircraft could be scheduled to fly through those gaps [1, 2, 3, 4]. Since then, the Route Crossing Tool (RCT) has been developed to allow controllers to assess multiple pre-defined route options at points where the arrivals and departures cross, thereby increasing the possibility of climbing a departure through an arrival gap.The RCT aids in ensuring lateral separation between departure and arrival aircraft that pass through the same altitude. Since the RCT can be applied tactically, it can enable aircraft to fly through arrival flows even if these aircraft depart outside scheduled times. The RCT makes use of a set of predefined parallel departure routes crossing the arrival flow at equidistant intersecting points on the arrival route. The RCT uses the Estimated Time of Arrival (ETA) of the departure aircraft at each intersecting point to calculate the lateral separation with the neighboring arrivals when it crosses that point; this information is graphically displayed to the controller. Additionally, the RCT incorporates forecast winds in its ETA predictions.Multiple prototypes of the RCT have been iteratively developed with feedback from Subject Matter Experts (SMEs). This paper presents the final design, the design process, and lessons learned. Initial results from a simulation suggest that the tool was successful in helping controllers to safely climb more aircraft. Controller feedback on the tool was also positive.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN18143 , Digital Avionics Systems Conference (DASC); Oct 05, 2014 - Oct 09, 2014; Colorado Springs, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-20
    Description: Recent studies have shown that a more efficient use of airspace may involve shared airspace operations, i.e., temporal as well as spatial separation of arrival and departure flows [1][2]. Temporal separation would permit a departure aircraft to fly through an arrival flow, depending on an available gap. This would necessitate careful and precise coordination between controllers in different sectors. Three methods of coordination which permit the penetration of a controller's airspace by another controller's aircraft are described: point out, look-and-go, and prearranged coordination procedure. Requirements of each method are given, along with associated problems that have surfaced in the field as described by Aviation Safety and Reporting System (ASRS) and other reports. A Human-in-the-Loop simulation was designed to compare two of the methods: point out and prearranged coordination procedures. In prearranged coordination procedures (P-ACP), the controllers control an aircraft in another controller's airspace according to specified prearranged procedures, without coordinating each individual aircraft with another controller, as is done with point outs. In the simulation, three experienced controllers rotated through two arrival sectors and a non-involved arrival sector of a Terminal Radar Approach Control (TRACON) airspace. Results of eighteen one-hour simulation runs (nine in each of the two conditions) showed no impact of the coordination method on separation violations nor on arrival times for 208 departing aircraft crossing an arrival stream. Participant assessment indicated that although both coordination conditions were acceptable, the prearranged coordination procedure condition was slightly safer, more efficient, timely, and overall, worked better operationally. Problems arose in the point out condition regarding controllers noticing acceptance of point outs. Also, in about half of the point-out runs, time pressure was felt to have had an impact on when and if the departures could cross an arrival stream. An additional problem with point outs may be confusion in the field about which controller has responsibility for separating point-out aircraft from other aircraft.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN17699 , Digital Avionics Systems Conference; Oct 05, 2014 - Oct 09, 2014; Colorado Springs, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Data Exchange and Integration is necessary for progress towards an Integrated Arrival, Departure, and Surface (IADS) traffic management capability. In collaboration with the FAA, NASA has introduced new data exchange elements to Charlotte-Douglas International Airport air traffic facilities, including the American Airlines ramp, as part of the Airspace Technology Demonstration 2 (ATD2). This paper describes the new tools that deliver these elements, and the human factors impact of the tools as measured by post-bank surveys. Workload was unaffected by ATD2 tool use, and situational awareness was improved in the Tower and with Ramp controllers in the second round of surveys. Respondents described their tools as more helpful if they included ATD2 tools 1) in the Tower for insuring compliance for aircraft under a Traffic Management Initiative, 2) in the TRACON when actively used for many TRACON tasks, and 3) in the Ramp in the second round of surveys.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN56189 , International Conference on Applied Human Factors and Ergonomics; Jul 21, 2018 - Jul 25, 2018; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: NASA has been working with the FAA and aviation industry partners to develop and demonstrate new concepts and technologies that integrate arrival, departure, and surface traffic management capabilities. In March 2017, NASA conducted a human-in-the-loop (HITL) simulation for integrated surface and airspace operations, modeling Charlotte Douglas International Airport, to evaluate the operational procedures and information requirements for the tactical surface metering tool, and data exchange elements between the airline controlled ramp and ATC Tower. In this paper, we focus on the calibration of the tactical surface metering tool using various metrics measured from the HITL simulation results. Key performance metrics include gate hold times from pushback advisories, taxi-in-out times, runway throughput, and departure queue size. Subjective metrics presented in this paper include workload, situational awareness, and acceptability of the metering tool and its calibration.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN46874 , Digital Avionics Systems Conference (DASC); Sep 17, 2017 - Sep 21, 2017; Saint Petersburg, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: This document defines the procedure to disconnect TBFM IDAC's connection with ATD-2's STBO System at the Washington Air Route Traffic Center. This is part of the ATD-2 ZDC training package that was presented in September 2017.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN61009 , Release to website NASA Ames Research Center; Sep 14, 2018; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: This is the ATD-2 training presentation for ZDC. The original presentation was completed September 2017.The metering modes are described above. These will be updated depending on Modeset by the Ramp Manager, STBO Client will also display the Metering Mode Icon onthe right hand corner of the Toolbar.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN61005 , Website release NASA ARC; Sep 19, 2017 - Sep 20, 2017; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...