ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2016-01-16
    Description: This paper describes a real-time motion planner based on the drivers’ visual behavior-guided rapidly exploring random tree (RRT) approach, which is applicable to on-road driving of autonomous vehicles. The primary novelty is in the use of the guidance of drivers’ visual search behavior in the framework of RRT motion planner. RRT is an incremental sampling-based method that is widely used to solve the robotic motion planning problems. However, RRT is often unreliable in a number of practical applications such as autonomous vehicles used for on-road driving because of the unnatural trajectory, useless sampling, and slow exploration. To address these problems, we present an interesting RRT algorithm that introduces an effective guided sampling strategy based on the drivers’ visual search behavior on road and a continuous-curvature smooth method based on B-spline. The proposed algorithm is implemented on a real autonomous vehicle and verified against several different traffic scenarios. A large number of the experimental results demonstrate that our algorithm is feasible and efficient for on-road autonomous driving. Furthermore, the comparative test and statistical analyses illustrate that its excellent performance is superior to other previous algorithms.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-10-01
    Description: The vertical distribution of bedding-parallel stylolites in cores from the approximately 50-m-thick Thamama-B reservoir zone of the Lower Cretaceous Kharaib Formation is compared between two wells on the water-filled flanks and two wells on the crest of a giant oilfield where oil has previously been interpreted as having preserved higher porosity on the crest. Stylolite abundances indicate division of the reservoir zone into three intervals: The contrast in stylolite abundance in the center interval is consistent with oil having inhibited chemical compaction on the crest of the field. Minor dissolution along wispy seams in the center interval of the crest is interpreted as representing an incipient stage of stylolite development. The similarity in stylolite abundance in the top interval between crest and flank wells is interpreted as reflecting stylolite formation pre-dating oil emplacement because of greater depositional concentration of clay in thin laminations resembling flaser bedding. Stylolite growth in the basal interval may also partly predate oil filling, but the evidence for timing is unclear because stylolites in the heavily bitumen-stained basal interval of the crestal wells have thick bitumen coatings that may be residues from dissolution of the surrounding limestone. Negative correlation between porosity and both amplitude and proximity of stylolites supports the model of porosity loss by calcite cementation derived from stylolites. The overall porosity difference between crest (22%) and flanks (12–16%) approximately matches the volume of cement that would have been supplied by the thickness of strata dissolved on the flanks. The match between porosity difference and thickness variation supports a diagenetic system closed to significant calcite import or export. Profiles of bulk-chemical analyses reveal how clay (proportional to aluminum) and dolomite (proportional to magnesium) vary both vertically in the formation and laterally between the crest and flank locations. Higher clay values, suggested to facilitate stylolite development, occur mainly in the top and basal parts of the zone, reflecting episodic deposition of siliciclastic fines. Higher dolomite contents throughout the wackestone-dominated lower two thirds of the reservoir zone (around 5–10 wt. %) than in the grain-supported upper one third (little or no dolomite) are suggested to reflect differences in early dolomitization by seawater attending slower sedimentation rates in the lower part of the zone. Like the variations in chemical compaction, dolomitization is thus a manifestation of the layer-cake geometry of this reservoir. Detailed core descriptions from each well and tables of bulk-rock chemical analyses and stylolite data are available as supplemental material.
    Print ISSN: 1527-1404
    Electronic ISSN: 1938-3681
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-07-03
    Description: The upper reservoir zone of the Lower Cretaceous Kharaib Formation (46–54 m thick in the studied wells) is regarded as the upper portion of a third-order depositional sequence comprising higher-order cycles. Whereas the third-order sequence interpretation is clearly supported by the upward-shoaling trend of the reservoir zone, relationships defining the component cycles have not previously been documented and are the focus of the present study. Core descriptions from four wells in a single oilfield reveal little evidence of facies changes or trends of facies patterns indicative of high-frequency depositional cycles. Cycle boundaries could possibly be represented by the repetitive pattern of coarse beds (rudstone and floatstone) 0.1–2 m thick, commonly having sharp basal contacts and gradational upper contacts with enclosing packstone to wackestone. Because the coarse beds do not appear correlative between wells, however, we prefer the alternative interpretation that they reflect episodic storm events which locally redistributed detritus, sourced from a patchwork of low-relief lithosomes, across the flat surface of the epeiric Kharaib platform–lagoon. Although the existence of high-order eustatic fluctuations during upper Kharaib deposition is well established, low-amplitude variations in water depth may not have touched down on the sea floor to significantly affect sediment textures in contrast with the dominant storm signal. Reservoir sub-zones used for production operations, but previously suggested to be fourth-order parasequence sets, are defined by dips in porosity-log profiles, reflecting thin (approximately 1 m) intervals of increased stylolite frequency. These boundaries are thus diagenetic in character, but their correlation over tens to hundreds of kilometers indicates an underlying depositional control. We suggest that the link between sea level and diagenesis is depositional-clay content, which facilitates stylolitic dissolution. Profiles of bulk-rock alumina analyses in the studied cores show subtle indications of higher clay content at the sub-zone tops. Much greater clay peaks mark the third-order sequence boundaries, resulting in the “dense” (very low porosity) zones above and below the studied reservoir zone and the increased stylolite frequency in the upper and lower several meters of the zone. Possible factors promoting clay influx across a carbonate shelf during falls in sea level include increased stream gradients and more humid climate.
    Print ISSN: 1527-1404
    Electronic ISSN: 1938-3681
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...