ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Publisher
Years
  • 1
    Publication Date: 2018-11-29
    Description: Electrode material design is the key to the development of asymmetric supercapacitors with high electrochemical performances and stability. In this work, Al-doped NiO nanosheet arrays were synthesized using a facile hydrothermal method followed by a calcination process, and the synthesized arrays exhibited a superior pseudocapacitive performance, including a favourable specific capacitance of 2253 ± 105 F g –1 at a current density of 1 A g –1 , larger than that of an undoped NiO electrode (1538 ± 80 F g –1 ). More importantly, the arrays showed a high-rate capability (75% capacitance retention at 20 A g –1 ) and a high cycling stability (approx. 99% maintained after 5000 cycles). The above efficient capacitive performance benefits from the large electrochemically active area and enhanced conductivity of the arrays. Furthermore, an assembled asymmetric supercapacitor based on the Al-doped NiO arrays and N-doped multiwalled carbon nanotube ones delivered a high specific capacitance of 192 ± 23 F g –1 at 0.4 A g –1 with a high-energy density of 215 ± 15 Wh kg –1 and power density of 21.6 kW kg –1 . Additionally, the asymmetric device exhibited a durable cyclic stability (approx. 100% retention after 5000 cycles). This work with the proposed doping method will be beneficial to the construction of high-performance supercapacitor systems.
    Keywords: energy
    Electronic ISSN: 2054-5703
    Topics: Natural Sciences in General
    Published by Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...