ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-01-15
    Description: A question about how to predict the runoff from a basin where there is no history of flow measurements is probably featured in almost every hydrology graduate student's oral examinations. It has certainly been one of the longest-standing problems for the profession. The International Association of Hydrological Sciences Prediction in Ungauged Basins initiative [ Wagener et al ., 2004] has focused researchers and meetings on the topic, culminating in this book, which assembles the thoughts gathered over the last decade.
    Print ISSN: 0096-3941
    Electronic ISSN: 2324-9250
    Topics: Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-04-12
    Description: Estimating the thermal response of streams to a warming climate is important for prioritizing native fish conservation efforts. While there are plentiful estimates of air temperature responses to climate change, the sensitivity of streams, particularly small headwater streams, to warming temperatures is less well understood. A substantial body of literature correlates sub-annual scale temperature variations in air and stream temperatures driven by annual cycles in solar angle; however, these may be a low-precision proxy for climate change driven changes in the stream energy balance. We analyzed summer stream temperature records from forested streams in the Pacific Northwest for interannual correlations to air temperature and standardized annual streamflow departures. A significant pattern emerged where cold streams always had lower sensitivities to air temperature variation, while warm streams could be insensitive or sensitive depending on geological or vegetation context. A pattern where cold streams are less sensitive to direct temperature increases is important for conservation planning, although substantial questions may yet remain for secondary effects related to flow or vegetation changes induced by climate change.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-11-16
    Description: Streambed erosion and deposition are fundamental geomorphic processes in riverbeds, and monitoring their evolution is important for ecological system management and in-stream infrastructure stability. Previous research showed proof of concept that analysis of paired temperature signals of stream and pore waters can simultaneously provide monitoring scour and deposition, stream sediment thermal regime, and seepage velocity information. However, it did not address challenges often associated with natural systems, including non-ideal temperature variations (low amplitude, non-sinusoidal signal and vertical thermal gradients) and natural flooding conditions on monitoring scour and deposition processes over time. Here, we addressed this knowledge gap by testing the proposed thermal scour-deposition chain (TSDC) methodology, with laboratory experiments to test the impact of non-ideal temperature signals under a range of seepage velocities and with a field application during a pulse flood. Both analyses showed excellent match between surveyed and temperature-derived bed elevation changes even under very low temperature signal amplitudes (less than 1°C), non-ideal signal shape (sawtooth shape) and strong and changing vertical thermal gradients (4°C/m). Root mean square errors on predicting the change in streambed elevations were comparable with the median grain size of the streambed sediment. Future research should focus on improved techniques for temperature signal phase and amplitude extractions, as well as TSDC applications over long periods spanning entire hydrographs.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-12-24
    Description: we propose a new method based on temperature time series of surface and streambed pore waters to monitor local changes in streambed surface elevations at a nominally daily time scale. The proposed method uses the naturally occurring daily temperature signal changes in amplitude and phase between stream water and the water flowing within the streambed sediment. Application of the method in a fine-bedded stream predicts the timing and magnitude of a prescribed sequence of scour and deposition. This provides a new, effective, easy to use, and economic methodology to monitor the temporal evolution of erosion and depositional patterns in rivers.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Luce, Charles; Tonina, Daniele; Applebee, R; DeWeese, Timothy (2017): Was that assumption necessary? Reconsidering boundary conditions for analytical solutions to estimate streambed fluxes. Water Resources Research, 53(11), 9771-9790, https://doi.org/10.1002/2017WR020618
    Publication Date: 2023-01-13
    Description: To test revised theory for estimating fluid fluxes from temperature time series, we employed laboratory measurements and numerical modeling. Temperature and flow measurements were taken from a 40 cm X 40 cm Plexiglas tank filled with water and send. Full details of the experiment apparatus and procedure are provided in the associated text. Here we provide the flow rate data from a tipping bucket record and temperature time series from the water above the sand, and 2.97 cm into the sand. In addition we provide the code for a numerical (forward-time central-space) advection-dispersion model using a simple sinusoidal upper boundary condition along with code using a fast Fourier Transform to extract system parameters.
    Type: Dataset
    Format: application/zip, 1.7 MBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Restoration ecology 5 (1997), S. 0 
    ISSN: 1526-100X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Many forest roads are being closed as a step in watershed restoration. Ripping roads with subsoilers or rock rippers is a common practice to increase the infiltration capacity of roads before closure. When considering the effectiveness of ripping for reducing runoff and erosion and the potential reduction in slope stability by saturating road fills, it is important to know how ripping changes the infiltration capacity of forest roads. Hydrographs from simulated rainfall on 1 × 1 m plots were analyzed to find the saturated hydraulic conductivity, an indicator of infiltration capacity. I examined saturated hydraulic conductivity for three treatments on two different soils. One road was built in a soil derived from the metamorphic belt series geology of northern Idaho, a soil noted for its high rock fragment content. The second road was built in a sandy soil derived from decomposed granitics of the Idaho batholith. On each soil, five plots were installed on a road before ripping, and nine plots were installed on the same road segment following ripping, four covered with a heavy straw mulch and five without. Three half-hour rainfall events with intensities near 90 mm/hr were simulated on each plot. Results show that ripping increases hydraulic conductivities enough to reduce risk of runoff but does not restore the natural hydraulic conductivity of a forested slope. The unripped road surfaces had hydraulic conductivities in the range of 0–4 mm/hr, whereas ripped roads were in the range of 20–40 mm/hr after the second event. Surface sealing and tilled soil subsidence processes are important in reducing the hydraulic conductivity of the soils with repeated wetting. Subsidence appears to be important on the granitic soil, whereas surface sealing was more important on the belt series soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of organic chemistry 43 (1978), S. 1968-1972 
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Ground water 7 (1969), S. 0 
    ISSN: 1745-6584
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Environmental science & technology 5 (1971), S. 193-193 
    ISSN: 1520-5851
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-08-20
    Description: Western United States wildfire increases have been generally attributed to warming temperatures, either through effects on winter snowpack or summer evaporation. However, near-surface air temperature and evaporative demand are strongly influenced by moisture availability and these interactions and their role in regulating fire activity have never been fully explored. Here we show that previously unnoted declines in summer precipitation from 1979 to 2016 across 31–45% of the forested areas in the western United States are strongly associated with burned area variations. The number of wetting rain days (WRD; days with precipitation ≥2.54 mm) during the fire season partially regulated the temperature and subsequent vapor pressure deficit (VPD) previously implicated as a primary driver of annual wildfire area burned. We use path analysis to decompose the relative influence of declining snowpack, rising temperatures, and declining precipitation on observed fire activity increases. After accounting for interactions, the net effect of WRD anomalies on wildfire area burned was more than 2.5 times greater than the net effect of VPD, and both the WRD and VPD effects were substantially greater than the influence of winter snowpack. These results suggest that precipitation during the fire season exerts the strongest control on burned area either directly through its wetting effects or indirectly through feedbacks to VPD. If these trends persist, decreases in summer precipitation and the associated summertime aridity increases would lead to more burned area across the western United States with far-reaching ecological and socioeconomic impacts.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...