ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-02-14
    Description: X‐ray crystallography has witnessed a massive development over the past decade, driven by large increases in the intensity and brightness of X‐ray sources and enabled by employing high‐frame‐rate X‐ray detectors. The analysis of large data sets is done via automatic algorithms that are vulnerable to imperfections in the detector and noise inherent with the detection process. By improving the model of the behaviour of the detector, data can be analysed more reliably and data storage costs can be significantly reduced. One major requirement is a software mask that identifies defective pixels in diffraction frames. This paper introduces a methodology and program based upon concepts of machine learning, called robust mask maker (RMM), for the generation of bad‐pixel masks for large‐area X‐ray pixel detectors based on modern robust statistics. It is proposed to discriminate normally behaving pixels from abnormal pixels by analysing routine measurements made with and without X‐ray illumination. Analysis software typically uses a Bragg peak finder to detect Bragg peaks and an indexing method to detect crystal lattices among those peaks. Without proper masking of the bad pixels, peak finding methods often confuse the abnormal values of bad pixels in a pattern with true Bragg peaks and flag such patterns as useful regardless, leading to storage of enormous uninformative data sets. Also, it is computationally very expensive for indexing methods to search for crystal lattices among false peaks and the solution may be biased. This paper shows how RMM vastly improves peak finders and prevents them from labelling bad pixels as Bragg peaks, by demonstrating its effectiveness on several serial crystallography data sets.
    Description: Attention is focused on perhaps the biggest bottleneck in data analysis for serial crystallography at X‐ray free‐electron lasers, which has not received serious enough examination to date. An effective and reliable way is presented to identify anomalies in detectors, using machine learning and recently developed mathematical methods in the field referred to as `robust statistics'. image
    Keywords: ddc:548 ; bad‐pixel masks ; robust mask maker ; machine learning ; robust statistics ; serial crystallography
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-27
    Description: Serial crystallography records still diffraction patterns from single, randomly oriented crystals, then merges data from hundreds or thousands of them to form a complete data set. To process the data, the diffraction patterns must first be indexed, equivalent to determining the orientation of each crystal. A novel automatic indexing algorithm is presented, which in tests usually gives significantly higher indexing rates than alternative programs currently available for this task. The algorithm does not require prior knowledge of the lattice parameters but can make use of that information if provided, and also allows indexing of diffraction patterns generated by several crystals in the beam. Cases with a small number of Bragg spots per pattern appear to particularly benefit from the new approach. The algorithm has been implemented and optimized for fast execution, making it suitable for real‐time feedback during serial crystallography experiments. It is implemented in an open‐source C++ library and distributed under the LGPLv3 licence. An interface to it has been added to the CrystFEL software suite.
    Description: A description and evaluation are given of XGANDALF, extended gradient descent algorithm for lattice finding, an algorithm developed for fast and accurate indexing of snapshot diffraction patterns. image
    Keywords: 548 ; indexing ; XGANDALF ; CrystFEL ; multiple lattices ; serial crystallography
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-27
    Description: A crystallographic indexing algorithm, pinkIndexer, is presented for the analysis of snapshot diffraction patterns. It can be used in a variety of contexts including measurements made with a monochromatic radiation source, a polychromatic source or with radiation of very short wavelength. As such, the algorithm is particularly suited to automated data processing for two emerging measurement techniques for macromolecular structure determination: serial pink‐beam X‐ray crystallography and serial electron crystallography, which until now lacked reliable programs for analyzing many individual diffraction patterns from crystals of uncorrelated orientation. The algorithm requires approximate knowledge of the unit‐cell parameters of the crystal, but not the wavelengths associated with each Bragg spot. The use of pinkIndexer is demonstrated by obtaining 1005 lattices from a published pink‐beam serial crystallography data set that had previously yielded 140 indexed lattices. Additionally, in tests on experimental serial crystallography diffraction data recorded with quasi‐monochromatic X‐rays and with electrons the algorithm indexed more patterns than other programs tested.
    Description: pinkIndexer, an algorithm developed for indexing of snapshot diffraction patterns recorded with pink‐beam X‐rays, monochromatic X‐rays and electrons, is described and its use evaluated. image
    Keywords: 548 ; indexing ; pinkIndexer ; CrystFEL ; pink X‐ray beam ; serial electron diffraction
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-14
    Description: A method is presented for the measurement of the phase gradient of a wavefront by tracking the relative motion of speckles in projection holograms as a sample is scanned across the wavefront. By removing the need to obtain an undistorted reference image of the sample, this method is suitable for the metrology of highly divergent wavefields. Such wavefields allow for large magnification factors that, according to current imaging capabilities, will allow for nanoradian angular sensitivity and nanoscale sample projection imaging. Both the reconstruction algorithm and the imaging geometry are nearly identical to that of ptychography, except that the sample is placed downstream of the beam focus and that no coherent propagation is explicitly accounted for. Like other X-ray speckle tracking methods, it is robust to low-coherence X-ray sources, making it suitable for laboratory-based X-ray sources. Likewise, it is robust to errors in the registered sample positions, making it suitable for X-ray free-electron laser facilities, where beam-pointing fluctuations can be problematic for wavefront metrology. A modified form of the speckle tracking approximation is also presented, based on a second-order local expansion of the Fresnel integral. This result extends the validity of the speckle tracking approximation and may be useful for similar approaches in the field.
    Keywords: 550 ; X-ray speckle tracking ; ptychography ; phase retrieval ; wavefront metrology ; in-line projection holography
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-12-03
    Description: In recent years, X-ray speckle-tracking techniques have emerged as viable tools for wavefront metrology and sample imaging applications. These methods are based on the measurement of near-field images. Thanks to their simple experimental setup, high angular sensitivity and compatibility with low-coherence sources, these methods have been actively developed for use with synchrotron and laboratory light sources. Not only do speckle-tracking techniques give the potential for high-resolution imaging, but they also provide rapid and robust characterization of aberrations of X-ray optical elements, focal spot profiles, and sample position and transmission properties. In order to realize these capabilities, software implementations are required that are equally rapid and robust. To address this need, a software suite has been developed for the ptychographic X-ray speckle-tracking technique, an X-ray speckle-based method suitable for highly divergent wavefields. The software suite is written in Python 3, with an OpenCL back end for GPU and multi-CPU core processing. It is accessible as a Python module, through the command line or through a graphical user interface, and is available as source code under Version 3 or later of the GNU General Public License.
    Keywords: 548 ; software ; wavefront metrology ; speckle tracking ; ptychography ; X-ray projection imaging
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-07-04
    Description: The recent diversification of macromolecular crystallographic experiments including the use of pink beams, convergent electron diffraction and serial snapshot crystallography has shown the limitations of using the Laue equations for diffraction prediction. This article gives a computationally efficient way of calculating approximate crystal diffraction patterns given varying distributions of the incoming beam, crystal shapes and other potentially hidden parameters. This approach models each pixel of a diffraction pattern and improves data processing of integrated peak intensities by enabling the correction of partially recorded reflections. The fundamental idea is to express the distributions as weighted sums of Gaussian functions. The approach is demonstrated on serial femtosecond crystallography data sets, showing a significant decrease in the required number of patterns to refine a structure to a given error.
    Description: Reflection position, size and shape prediction and partiality estimation of crystal diffraction by integrating using a Gaussian basis are described.
    Keywords: ddc:548 ; partiality estimation ; diffraction prediction ; merging ; serial snapshot crystallography
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 66 (1995), S. 1332-1334 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: New operational modes have been added to the Stony Brook scanning transmission x-ray microscope at the NSLS by the incorporation of a CCD detector. A zone plate focuses x rays to a microprobe, through which a specimen can be scanned. The x rays transmitted by the specimen are detected in the far field, at high angular resolution, by the CCD. The microdiffraction patterns so obtained may be used in several ways to obtain information about the sample: by obtaining structural information about the specimen from the patterns on a point-by-point basis, by building up scanned images from signals derived from the CCD frames, or by deconvolving the four-dimensional dataset. These modes increase the resolution that can be achieved in the microscope, offer new imaging methods, and ways of obtaining phase and amplitude maps of a specimen. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 33 (2004), S. 157-176 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Recent work is extending the methodology of X-ray crystallography to the structure determination of noncrystalline specimens. The phase problem is solved using the oversampling method, which takes advantage of "continuous" diffraction patterns from noncrystalline specimens. Here we review the principle of this newly developed technique and discuss the ongoing experiments of imaging nonperiodic objects, such as cells and cellular structures, using coherent and bright X rays produced by third-generation synchrotron sources. In the longer run, the technique may be applicable to image single biomolecules using anticipated X-ray free electron lasers. Here, computer simulations have so far demonstrated two important steps: (a) by using an extremely intense femtosecond X-ray pulse, a diffraction pattern can be recorded from a macromolecule before radiation damage manifests itself; and (b) the phase information can be retrieved in an ab initio fashion from a set of calculated noisy diffraction patterns of single protein molecules.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Chester : International Union of Crystallography (IUCr)
    Journal of synchrotron radiation 6 (1999), S. 50-50 
    ISSN: 1600-5775
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Geosciences , Physics
    Notes: A fast (∼12 ms) shutter for UHV beamlines is described. In the closed position the beam is blocked by an electrically isolated aluminium piece. The total yield photocurrent in this situation can be used to monitor the beam intensity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-05-14
    Description: The bright ultrafast pulses of X-ray Free-Electron Lasers allow investigation into the structure of matter under extreme conditions. We have used single pulses to ionize and probe water as it undergoes a phase transition from liquid to plasma. We report changes in the structure of liquid water on a femtosecond time scale when irradiated by single 6.86 keV X-ray pulses of more than 106 J/cm2. These observations are supported by simulations based on molecular dynamics and plasma dynamics of a water system that is rapidly ionized and driven out of equilibrium. This exotic ionic and disordered state with the density of a liquid is suggested to be structurally different from a neutral thermally disordered state.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...