ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2013-02-16
    Description: River flow synthesizing and downscaling are required for the analysis of risks associated with water resources management plans and for regional impact studies of climate change. This paper presents a probabilistic model that synthesizes and downscales monthly river flow by estimating the joint distribution of flows of two adjacent months conditional on covariates. The covariates may consist of lagged and aggregated flow variables (synthesizing), or exogenous climatic variables (downscaling), or combinations of these two types. The joint distribution is constructed by connecting two marginal distributions in terms of copulas. The relationship between covariates and distribution parameters is approximated by an artificial neural network, which is calibrated using the principle of maximum likelihood. Outputs of the neural network yield parameters of the joint distribution. From the estimated joint distribution, a conditional distribution of river flow of current month given the estimation of the previous month can be derived. Depending on the different types of covariate information, this conditional distribution may serve as the ‘engine’ for synthesizing or downscaling river flow sequences. The idea of the proposed model is illustrated using three case studies. The first case deals with synthetic data and shows that the model is capable of fitting a non-stationary joint distribution. Second, the model is utilized to synthesize monthly river flow at four sample stations on the main stream of the Colorado River. Results reveal that the model reproduces essential evaluation statistics fairly well. Third, a simple illustrative example for river flow downscaling is presented. Analysis indicates that the model can be a viable option to downscale monthly river flow as well.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-01-04
    Description: This paper presents an improved brivariate mixed distribution, which is capable of modeling the dependence of daily rainfall from two distinct sources (e.g., rainfall from two stations, two consecutive days, or two instruments such as satellite and rain gauge). The distribution couples an existing framework for building a bivariate mixed distribution, the theory of copulae and a hybrid marginal distribution. Contributions of the improved distribution are twofold. One is the appropriate selection of the bivariate dependence structure from a wider admissible choice (10 candidate copula families). The other is the introduction of a marginal distribution capable of better representing low to moderate values as well as extremes of daily rainfall. Among several applications of the improved distribution, particularly presented here is its utility for single-site daily rainfall simulation. Rather than simulating rainfall occurrences and amounts separately, the developed generator unifies the two processes by generalizing daily rainfall as a Markov process with autocorrelation described by the improved bivariate mixed distribution. The generator is first tested on a sample station in Texas. Results reveal that the simulated and observed sequences are in good agreement with respect to essential characteristics. Then, extensive simulation experiments are carried out to compare the developed generator with three other alternative models: the conventional two-state Markov chain generator, the transition probability matrix model and the semi-parametric Markov chain model with kernel density estimation for rainfall amounts. Analyses establish that overall the developed generator is capable of reproducing characteristics of historical extreme rainfall events and is apt at extrapolating rare values beyond the upper range of available observed data. Moreover, it automatically captures the persistence of rainfall amounts on consecutive wet days in a relatively natural and easy way. Another interesting observation is that the recognized ‘overdispersion’ problem in daily rainfall simulation ascribes more to the loss of rainfall extremes than the under-representation of first-order persistence. The developed generator appears to be a sound option for daily rainfall simulation, especially in particular hydrologic planning situations when rare rainfall events are of great importance.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...