ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Microbiology 44 (1990), S. 649-688 
    ISSN: 0066-4227
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 47 (1991), S. 1067-1069 
    ISSN: 1420-9071
    Keywords: Calcitonin release ; 6.23 rat C-cell line ; cyclic nucleotides ; pharmacological mediators
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Calcitonin release from 6.23 rat medullary thyroid carcinoma C-cells was stimulated by dibutyryl cyclic AMP and inhibited by dibutyryl cyclic GMP in concentration dependent fashion. Histamine, isoproterenol, prostaglandin E2 and Bay K 8644 stimulated calcitonin release, while acetylcholine and serotonin had no significant effect on CT release.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 35 (1983), S. 566-570 
    ISSN: 1432-0827
    Keywords: Osteoclast ; Motility ; Calcitonin ; Prostacyclin ; Cyclic AMP
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary We separated osteoclasts from bone and observed the effect of several known and potential mediators of the control of bone resorption on their cytoplasmic motility. We already found that calcitonin (CT), a hormone that inhibits bone resorption, regularly causes complete inhibition of cytoplasmic motility, specific for osteoclasts, through a trypsin-sensitive membrane receptor [1]. We report here that prostaglandin I2 (PGI2) and dibutyryl cyclic AMP induce an identical change in osteoclastic behavior. We found that theophylline, which inhibits intracellular cyclic AMP degradation, and which itself had no effect on osteoclastic motility, potentiated the cytoplasmic inhibition casued by CT, PGI2, and cyclic AMP. This suggests that PGI2 and CT cause cytoplasmic quiescence by increasing the intracellular level of cyclic AMP, a view compatible with the known ability of CT to increase cyclic AMP in bone [2]. Parathyroid hormone (PTH), PGE2, and 1,25 dihydroxycholecalciferol (1,25 (OH)2D3), hormones known to stimulate osteoclasts, did not stimulate the activity of either active or quiescent isolated osteoclasts. The undoubted ability of these hormones to stimulate osteoclastic activityin vivo may therefore be mediated through a primary hormonal interaction with another cell type.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 36 (1984), S. 556-558 
    ISSN: 1432-0827
    Keywords: Osteoclast ; Bone resorption ; Mononuclear phagocytes ; Monocytes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary Monocytes, peritoneal macrophages, inflammatory polykaryons, and myeloid cell lines were incubated on slices of human cortical bone and assessed for their capacity to resorb bone by scanning electron microscopy. None of these cell types, mononuclear or multinucleate, induced any detectable change in the bone surface, even after prolonged incubation, and even in the presence of macrophage activators. These findings emphasise the inadequacies of mononuclear phagocytes as surrogate osteoclasts, and expose a discrepancy between45Ca release and bone resorption.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 241 (1985), S. 671-675 
    ISSN: 1432-0878
    Keywords: Collagenase ; Osteoclast ; Bone resorption ; Osteoblast ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The cell-free endocranial surface of young adult rat parietal bones was used as a substrate for bone cell-derived mammalian collagenase. Incubation of parietal bones in a concentration of enzyme comparable to that secreted by osteoblastic cells in vitro caused destruction of surface osteoid, and resulted in exposure of mineral onto the bone surface. Bones so pre-treated were considerably more susceptible to osteoclastic resorption than bones preincubated in the absence of collagenase. These results are consistent with the view that the osteoid layer which covers bone surfaces acts as a barrier to osteoclastic contact with underlying, resorption — stimulating bone mineral; and that cells of the osteoblastic lineage induce osteoclastic resorption through collagenase secretion which, by digestion of the surface osteoid, exposes bone mineral to osteoclastic contact.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 132 (1987), S. 441-452 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The primary and specific function of the osteoclast is the resorption of bone. We have applied this criterion, and a monoclonal antibody that binds specifically to osteoclasts, to cultures of tissues that may contain osteoclastic precursors. Bone marrow and spleen cells were incubated for up to 4 weeks in the presence or absence of parathyroid hormone, interleukin 1, or 1,25(OH)2 vitamin D3, on plastic coverslips or slices of devitalised bone. Osteoclasts (as judged by the presence of resorption cavities and the appearance of monoclonal antibody-positive cells) did not develop in cultures incubated without added hormones, nor in cultures containing parathyroid hormone or interleukin 1, but were regularly observed when bone marrow cells were incubated with 1,25(OH)2vitamin D3. Although multinucleate giant cells were common after incubation, especially in the presence 1,25(OH)2vitamin D3, monoclonal antibody bound not to these cells but to a minor and distinctive population of mononuclear cells and cells of low multinuclearity. We found no excavations and no monoclonal antibody-positive cells after incubation of peritoneal macrophages with 1,25(OH)2D3. These results provide direct evidence of osteoclastic function arising in cultures of haemopoietic tissues.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 132 (1987), S. 90-96 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Osteoclasts disaggregated from neonatal rat long bones and incubated on plastic or glass substrates were found to release a considerable proportion of tartrate-resistant acid phosphatase into culture supernatants. Enzyme release was detectable in the supernatant medium of cultures containing as few as ten cells after 1 hr of incubation and proceeded in a linear manner for the ensuing 6 hr. Calcitonin (1 pg/ml) and cytochalasin B (5 μ/ml) inhibited release into the supernatant, suggesting that release represents enzyme secretion. Prostaglandin E1 induced transient inhibition followed by recovery; parathyroid hormone and 1,25(OH)2 vitamin D3 were without influence. Acid phosphatase release in these cultures shows a pattern of hormone responsiveness that coincides with the effects of these hormones on bone resorption by isolated osteoclasts. The extent of acid phosphatase release and its regulation by calciotropic hormones imply a central role for acid hydrolase secretion in osteoclastic bone resorption. The experimental system described in this study may facilitate analysis of the pharmacological hormonal and cellular regulation of osteoclastic function.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 137 (1988), S. 199-203 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Colony stimulating factors (CSFs) regulate the survival, proliferation and differentiation of haemopoietic progenitor cells, as well as the functional activity of mature cells. Because the osteoclast is derived from haemopoietic tissue, and because osteoblastic cells produce CSFs, we tested the effects of several CSFs on bone resorption by osteoclasts disaggregated from neonatal rat long bone. We found that recombinant macrophage (M)-CSF was a potent inhibitor of bone resorption, causing significant inhibition at concentrations similar to those required to support the growth of macrophage colonies in agar. Unlike other inhibitors of osteoclastic resorption, M-CSF did not alter cytoplasmic motility in time-lapse recordings, suggesting that M-CSF may inhibit osteoclasts through a different transduction mechanism. None of the remaining cytokines tested (granulocyte-macrophage CSF, interleukin 3, interleukin 6, or interferon γ) influenced bone resorption. M-CSF production may be a mechanism by which osteoblastic cells, which produce M-CSF, may regulate osteoclastic function. Alternatively, inhibition of osteoclastic resorption by a CSF that is responsible for amplification of the macrophage compartment may reflect a close lineage relationship between mononuclear phagocytes, in which M-CSF induces a diversion of lineage resources away from osteoclastic function.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 140 (1989), S. 478-482 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Osteoclasts are the cells that resorb bone. It is generally presumed, on the basis of indirect experiments, that they are derived from the hemopoietic stem cell. However, this origin has never been established. We have developed an assay for osteoclastic differentiation in which bone marrow cells are incubated in liquid culture on slices of cortical bone. The bone slices are inspected in the scanning electron microscope after incubation for the presence of excavations, which are characteristic of osteoclastic activity. We have now incubated bone marrow cells at low density, or a factor-dependent mouse hemopoietic cell line (FDCP-mix A4) with 1,25 dihydroxyvitamin D3 (a hormone which we have previously found induces osteoclastic differentiation) with and without murine bone marrow stromal cells, or with and without 3T3 cells, on bone slices. Neither the bone marrow cells nor the bone marrow stromal cells alone developed osteoclastic function even in the presence of 1,25 dihydroxyvitamin D3. However, extensive excavation of the bone surface was observed, only in the presence of 1,25 dihydroxy-vitamin D3, on bone slices on which bone marrow stromal cells were cocultured with low-density bone marrow cells or the hemopoietic cell line. Similar results were obtained when the bone marrow stromal cells were killed by glutaraldehyde fixation; 3T3 cells were unable to substitute for stromal cells. These results are strong evidence that osteoclasts derive from the hemopoietic stem cell and suggest that although mature osteoclasts possess neither receptors for nor responsiveness to 1,25 dihydroxyvitamin D3, the hormone induces osteoclastic function through a direct effect on hemopoietic cells rather than through some accessory cell in the bone marrow stroma. The failure of 3T3 cells, which enable differentiation of other hemopoietic progeny from this cell line, to induce osteoclastic differentiation suggests that bone marrow stroma possesses additional characteristics distinct from those that induce differentiation of other hemopoietic cells that are specifically required for osteoclastic differentiation.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 147 (1991), S. 208-214 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Increased numbers of mast cells are commonly seen at sites of increased bone resorption and in osteoporosis. Long-term administration of heparin, a major component of mast cell granules, causes osteoporosis. We therefore tested the effect of heparin on bone resorption by osteoclasts disaggregated from neonatal rat long bones. We found that, in the absence of serum, heparin was without effect on osteoclast function. However, in the presence of newborn calf serum, rat serum, or bovine platelet-poor plasma-derived serum, heparin, in the range 25-100 μg/ml, induced an increase in osteoclastic bone resorption. Heparin appeared to act through binding and enhancement of an osteoclast resorption-stimulating activity (ORSA) present in serum. A number of known factors that show an affinity for heparin, including transforming growth factor-p, platelet-derived growth factor, insulin-like growth factors I or II, acidic or basic fibroblast growth factors, fibfonectin, or laminin, could not substitute for ORSA, suggesting that the activity may represent a novel heparin-binding factor. The ability of glycosaminoglycans (GACs) and related molecules to enhance resorption was dependent on the degree of sulfation and on their size: The high molecular weight GAG heparan sulfate and polysaccharides fucoidan or dextran sulfate showed a similar effect, while low molecular weight heparin, chondroitin-2-sulfate, chon-droitin-4-sulfate, and chondroitin-6-sulfate were without effect. We propose that mast cells or heparin therapy increases bone resorption through augmentation of the activity of a factor invoked in the locd and systemic regulation of osteoclastic bone resorption.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...