ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Celis-Plá, Paula S M; Hall-Spencer, Jason M; Horta, Paulo Antunes; Milazzo, Marco; Korbee, Nathalie; Cornwall, Christopher Edward; Figueroa, Félix L (2015): Macroalgal responses to ocean acidification depend on nutrient and light levels. Frontiers in Marine Science, 2, https://doi.org/10.3389/fmars.2015.00026
    Publication Date: 2024-05-24
    Description: Ocean acidification may benefit algae that are able to capitalize on increased carbon availability for photosynthesis, but it is expected to have adverse effects on calcified algae through dissolution. Shifts in dominance between primary producers will have knock-on effects on marine ecosystems and will likely vary regionally, depending on factors such as irradiance (light vs. shade) and nutrient levels (oligotrophic vs. eutrophic). Thus experiments are needed to evaluate interactive effects of combined stressors in the field. In this study, we investigated the physiological responses of macroalgae near a CO2 seep in oligotrophic waters off Vulcano (Italy). The algae were incubated in situ at 0.2 m depth using a combination of three mean CO2 levels (500, 700-800 and 1200 µatm CO2), two light levels (100 and 70% of surface irradiance) and two nutrient levels of N, P, and K (enriched vs. non-enriched treatments) in the non-calcified macroalga Cystoseira compressa (Phaeophyceae, Fucales) and calcified Padina pavonica (Phaeophyceae, Dictyotales). A suite of biochemical assays and in vivo chlorophyll a fluorescence parameters showed that elevated CO2 levels benefitted both of these algae, although their responses varied depending on light and nutrient availability. In C. compressa, elevated CO2 treatments resulted in higher carbon content and antioxidant activity in shaded conditions both with and without nutrient enrichment--they had more Chla, phenols and fucoxanthin with nutrient enrichment and higher quantum yield (Fv/Fm) and photosynthetic efficiency (alpha ETR) without nutrient enrichment. In P. pavonica, elevated CO2 treatments had higher carbon content, Fv/Fm, alpha ETR, and Chla regardless of nutrient levels--they had higher concentrations of phenolic compounds in nutrient enriched, fully-lit conditions and more antioxidants in shaded, nutrient enriched conditions. Nitrogen content increased significantly in fertilized treatments, confirming that these algae were nutrient limited in this oligotrophic part of the Mediterranean. Our findings strengthen evidence that brown algae can be expected to proliferate as the oceans acidify where physicochemical conditions, such as nutrient levels and light, permit.
    Keywords: Alkalinity, total; Alkalinity, total, standard error; Antioxidant activity; Antioxidant activity, standard error; Aragonite saturation state; Aragonite saturation state, standard error; Benthos; Bicarbonate ion; Bicarbonate ion, standard error; Biomass/Abundance/Elemental composition; Calcite saturation state; Calcite saturation state, standard error; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, per dry mass; Carbon/Nitrogen ratio; Carbon/Nitrogen ratio, standard error; Carbonate ion; Carbonate ion, standard error; Carbonate system computation flag; Carbon content, per dry mass, standard error; Carbon dioxide; Carbon dioxide, standard error; Chlorophyll a; Chlorophyll a, standard error; Chlorophyll c; Chlorophyll c, standard error; Chromista; CO2 vent; Coast and continental shelf; Cystoseira compressa; Electron transport rate; Electron transport rate, standard error; Field experiment; Fucoxanthin; Fucoxanthin, standard error; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Light saturation point; Light saturation point, standard error; Macroalgae; Macro-nutrients; Maximum photochemical quantum yield of photosystem II; Maximum photochemical quantum yield of photosystem II, standard error; Mediterranean Sea; Nitrogen, per dry mass; Nitrogen content, per dry mass, standard error; Non photochemical quenching; Non photochemical quenching, standard error; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Padina pavonica; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; pH; pH, standard error; Phenolics, all; Phenolics, all, standard error; Photosynthetic efficiency; Photosynthetic efficiency, standard error; Potentiometric; Potentiometric titration; Primary production/Photosynthesis; Salinity; Salinity, standard error; Single species; Species; Temperate; Temperature; Temperature, water; Temperature, water, standard error; Treatment; Violaxanthin; Violaxanthin, standard error
    Type: Dataset
    Format: text/tab-separated-values, 1470 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Celis-Plá, Paula S M; Martínez, Brezo; Korbee, Nathalie; Hall-Spencer, Jason M; Figueroa, Félix L (2017): Ecophysiological responses to elevated CO2 and temperature in Cystoseira tamariscifolia (Phaeophyceae). Climatic Change, 142(1-2), 67-81, https://doi.org/10.1007/s10584-017-1943-y
    Publication Date: 2024-05-24
    Description: Ocean acidification increases the amount of dissolved inorganic carbon (DIC) available in seawater which can benefit photosynthesis in those algae that are currently carbon limited, leading to shifts in the structure and function of seaweed communities. Recent studies have shown that ocean acidification-driven shifts in seaweed community dominance will depend on interactions with other factors such as light and nutrients. The study of interactive effects of ocean acidification and warming can help elucidate the likely effects of climate change on marine primary producers. In this study, we investigated the ecophysiological responses of Cystoseira tamariscifolia (Hudson) Papenfuss. This large brown macroalga plays an important structural role in coastal Mediterranean communities. Algae were collected from both oligotrophic and ultraoligotrophic waters in southern Spain. They were then incubated in tanks at ambient (ca. 400-500 ppm) and high CO2 (ca. 1200-1300 ppm), and at 20 °C (ambient temperature) and 24 °C (ambient temperature +4 °C). Increased CO2 levels benefited the algae from both origins. Biomass increased in elevated CO2 treatments and was similar in algae from both origins. The maximal electron transport rate (ETRmax), used to estimate photosynthetic capacity, increased in ambient temperature/high CO2 treatments. The highest polyphenol content and antioxidant activity were observed in ambient temperature/high CO2 conditions in algae from both origins; phenol content was higher in algae from ultraoligotrophic waters (1.5-3.0%) than that from oligotrophic waters (1.0-2.2%). Our study shows that ongoing ocean acidification can be expected to increase algal productivity (ETRmax), boost antioxidant activity (EC50), and increase production of photoprotective phenols. Cystoseira tamariscifolia collected from oligotrophic and ultraoligotrophic waters were able to benefit from increases in DIC at ambient temperatures. Warming, not acidification, may be the key stressor for this habitat as CO2 levels continue to rise.
    Keywords: Alkalinity, total; Alkalinity, total, standard error; Antioxidant activity; Antioxidant activity, standard error; Aragonite saturation state; Benthos; Bicarbonate ion; Bicarbonate ion, standard error; Bottles or small containers/Aquaria (〈20 L); Cabo_de_Gata_Nija; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, per dry mass; Carbonate ion; Carbonate ion, standard error; Carbonate system computation flag; Carbon content, per dry mass, standard error; Carbon dioxide; Carbon dioxide, standard error; Chromista; Coast and continental shelf; Cystoseira tamariscifolia; Event label; EXP; Experiment; Experiment duration; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard error; La_Arana; Laboratory experiment; Location; Macroalgae; Maximal electron transport rate; Maximal electron transport rate, standard error; Mediterranean Sea; Nitrate; Nitrate, standard error; Nitrogen, per dry mass; Nitrogen content, per dry mass, standard error; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; pH; pH, standard error; Phenolics, all; Phenolics, all, standard error; Phosphate; Phosphate, standard error; Potentiometric; Potentiometric titration; Primary production/Photosynthesis; Registration number of species; Salinity; Salinity, standard error; Single species; Species; Temperate; Temperature; Temperature, water; Temperature, water, standard error; Time point, descriptive; Treatment; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 3752 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-10-16
    Description: Cystoseira tamariscifolia thalli collected from rocky shores and rockpools in winter and summer in Southern Spain were incubated for 7 days in UV transparent cylindrical vessels under outdoor conditions. Photosynthetic activity estimated as in vivo chlorophyll α fluorescence of photosystem II, photosynthetic pigments, antioxidant activity (DPPH assay), phenolic compounds and total internal C and N contents were determined after short-term (3 d) and mid-term (7 d) periods. Maximum quantum yield of PSII (F v /F m ) was significantly higher in field-collected algae and after 7 d incubation in winter than in summer. In rocky shores and rockpools thalli, maximum electron transport rate (ETR max ) and photosynthetic efficiency (α ETR ) were much higher in summer than in winter. ETR of outdoor-grown thalli (in situ ETR) showed a daily pattern, with a decrease at noon in both winter and summer (3 rd and 7 th days). We found much higher antioxidant activity in thalli collected in summer than in winter. However, the concentration of internal UV screen substances (polyphenols) was higher in winter than in summer, whereas the release of phenolic compounds was lower. The highest capacity of acclimation in C. tamariscifolia found in summer and RS with emersion periods was explained by the highest dynamic photoinhibition, energy dissipation (non-photochemical quenching) and antioxidant activity (EC 50 ).
    Print ISSN: 0214-8358
    Electronic ISSN: 1886-8134
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-13
    Description: There is currently no information regarding the role that whole mitogen activated protein kinase (MAPK) pathways play in counteracting environmental stress in photosynthetic organisms. To address this gap, we exposed Ulva compressa to chronic levels of copper (10 µM) specific inhibitors of Extracellular Signal Regulated Kinases (ERK), c-Jun N-terminal Kinases (JNK), and Cytokinin Specific Binding Protein (p38) MAPKs alone or in combination. Intracellular copper accumulation and photosynthetic activity (in vivo chlorophyll a fluorescence) were measured after 6 h, 24 h, 48 h, and 6 days of exposure. By day 6, when one (except JNK) or more of the MAPK pathways were inhibited under copper stress, there was a decrease in copper accumulation compared with algae exposed to copper alone. When at least two MAPKs were blocked, there was a decrease in photosynthetic activity expressed in lower productivity (ETRmax), efficiency (αETR), and saturation of irradiance (EkETR), accompanied by higher non-photochemical quenching (NPQmax), compared to both the control and copper-only treatments. In terms of accumulation, once the MAPK pathways were partially or completely blocked under copper, there was crosstalk between these and other signaling mechanisms to enhance metal extrusion/exclusion from cells. Crosstalk occurred among MAPK pathways to maintain photosynthesis homeostasis, demonstrating the importance of the signaling pathways for physiological performance. This study is complemented by a parallel/complementary article Rodríguez-Rojas et al. on the role of MAPKs in copper-detoxification.
    Print ISSN: 1661-6596
    Electronic ISSN: 1422-0067
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-13
    Description: Following the physiological complementary/parallel Celis-Plá et al., by inhibiting extracellular signal regulated kinases (ERK), c-Jun N-terminal kinases (JNK), and cytokinin specific binding protein (p38), we assessed the role of the mitogen-activated protein kinases (MAPK) pathway in detoxification responses mediated by chronic copper (10 µM) in U. compressa. Parameters were taken at 6, 24, and 48 h, and 6 days (d). H2O2 and lipid peroxidation under copper and inhibition of ERK, JNK, or p38 alone increased but recovered by the sixth day. By blocking two or more MAPKs under copper, H2O2 and lipid peroxidation decayed even below controls. Inhibition of more than one MAPK (at 6 d) caused a decrease in total glutathione (reduced glutathione (GSH) + oxidised glutathione (GSSG)) and ascorbate (reduced ascorbate (ASC) + dehydroascorbate (DHA)), although in the latter it did not occur when the whole MAPK was blocked. Catalase (CAT), superoxide dismutase (SOD), thioredoxin (TRX) ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), and glutathione synthase (GS), were downregulated when blocking more than one MAPK pathway. When one MAPK pathway was blocked under copper, a recovery and even enhancement of detoxification mechanisms was observed, likely due to crosstalk within the MAPKs and/or other signalling processes. In contrast, when more than one MAPK pathway were blocked under copper, impairment of detoxification defences occurred, demonstrating that MAPKs were key signalling mechanisms for detoxification in macroalgae.
    Print ISSN: 1661-6596
    Electronic ISSN: 1422-0067
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-01-24
    Description: UV-absorbing compounds, such as mycosporine-like amino acids (MAAs), are a group of secondary metabolites present in many marine species, including red seaweeds. In these organisms, the content and proportion of the composition of MAAs vary, depending on the species and several environmental factors. Its high cosmetic interest calls for research on the content and composition of MAAs, as well as the dynamics of MAAs accumulation in seaweeds from different latitudes. Therefore, this study aimed to survey the content of UV-absorbing MAAs in three Subantarctic red seaweeds during a seasonal cycle. Using spectrophotometric and HPLC techniques, the content and composition of MAAs of intertidal Iridaea tuberculosa, Nothogenia fastigiate, and Corallina officinalis were assessed. Some samples were also analyzed using high-resolution mass spectrometry coupled with HPLC-ESI-MS in order to identify more precisely the MAA composition. I. tuberculosa exhibited the highest MAA values (above 1 mg g−1 of dried mass weight), while C. officinalis showed values not exceeding 0.4 mg g−1. Porphyra-334 was the main component in N. fastigiata, whereas I. tuberculosa and C. officinalis exhibited a high content of palythine. Both content and composition of MAAs varied seasonally, with high concentration recorded in different seasons, depending on the species, i.e., winter (I. tuberculosa), spring (N. fastigiata), and summer (C. officinalis). HPLC-ESI-MS allowed us to identify seven different MAAs. Two were recorded for the first time in seaweeds from Subantarctic areas (mycosporine-glutamic acid and palythine-serine), and we also recorded an eighth UV-absorbing compound which remains unidentified.
    Electronic ISSN: 1660-3397
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-03-17
    Print ISSN: 0165-0009
    Electronic ISSN: 1573-1480
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 2020-12-23
    Description: Fluctuations in solar radiation are one of the key factors affecting productivity and survival in habitat forming coastal macroalgae, in this regard, photoacclimation has a direct impact on the vulnerability and the capacity of seaweed to withstand, for instance, radiation excess. Here, we study ecophysiological responses through photosynthetic activity measurements under time-dependent (one year) fluctuations in solar radiation in the brown macroalga L. spicata. The responses presented seasonal patterns, with an increase in photosynthetic capacity during summer, expressed in greater maximal electron transport rate (ETRmax) and diminished thermal dissipation (NPQmax). Moreover, we studied photoprotective compounds (phenolic compounds) and total antioxidant capacity, which demonstrated an increase during periods of high solar radiation. In addition, content of photosynthetic pigment (Chla, Chlc and Carotenoids) increased under greater solar irradiance. The L. spicata can accumulate as reservoir photoprotective and antioxidant substances to withstand periods of high solar irradiance. All ecophysiological and biochemical responses in L. spicata indicate high photoacclimation and low vulnerability in the species, especially during with greater levels of solar irradiance.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...