ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-12
    Description: The purpose of this test is to evaluate the odor containment of the urine containment bag (UCB), P/N SDD46107234-306 in an environment simulating a spacecraft capsule. The goal is to determine the time of odor break through and the acceptability of the odor, once break through occurs. The goal is to simulate, as close as possible, the volume ratio (trash to free volume), trash content (vomit, urine, feces, and food trash), humidity and temperature of the capsule. The goal for minimum break through is 48 hours (Orion Block 0) from the start of the test. The goal for acceptability of odor is 2 weeks (including docked ISS time for Orion Block 0). Two UCB's will be tested simultaneously in different chambers. The one UCB will be tested empty, serving as a control. Odor break through will be based upon the when the filled UCB total organics exceeds that of the control (empty UCB) by a level detectable by a human panel (approximately 2 ppm).
    Keywords: Life Sciences (General); Man/System Technology and Life Support
    Type: JSC-CN-34228 , JSC-65891
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: The purpose of this report is to summarize the conclusions for the odor control test of the Urine Containment Bag (UCB), P/N SDD46107234-306 in an environment simulating a space craft capsule. JSC 65891, Odor Control Test Plan of the Urine Containment Bag (UCB) for Orion Utilization, documents the test plan. The details of the test set-up and data reduction are detailed in the WSTF test report for this test WSTF #10-44500, Odor Control Test Plan of the Urine Containment Bag (UCB) for Orion Utilization,. This document outlines the project conclusions and forward plans with regard to trash containment for Constellation.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-33613-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: As part of the qualification of the International Space Station (ISS) fine water mist portable fire extinguisher (PFE), several test methods were developed to determine firefighting capability against stored-energy sources. The most challenging of these devised stored-energy fire test methods proved to be the Lithium-ion (Li-ion) battery fire test scenario. The Orion crew capsule will utilize a different PFE technology from ISS (water spray rather than water mist), which spurred the need for the same type of evaluation focused on the sources of stored energy slated for use on Orion. Laptops were identified as a realistic source for stored-energy fires, requiring a modified Li-ion battery fire test scenario. In addition to open test cell (ambient oxygen concentration) testing to evaluate new proposed PFE performance, sealed chamber (20.9% and elevated oxygen concentration) testing was also performed. Chamber testing included combustion product sampling at various fire progression points for analysis and application to Orion emergency equipment design and response planning. The PFE stored-energy fire test methodology was modified and testing performed. Initial tests indicated ignition of the laptop magnesium laptop cases was possible. Additional tests were performed to characterize the laptop magnesium case fire behavior in various configurations. The new water spray PFE technology proved effective in extinguishing laptop stored-energy fires, and much was learned in the way these types of fires progressed. Findings indicate potential laptop magnesium case ignition mitigation strategies need to be further investigated.
    Keywords: Chemistry and Materials (General)
    Type: ICES-2018-260 , JSC-E-DAA-TN58033 , International Conference on Environmental Systems; Jul 08, 2018 - Jul 12, 2018; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...