ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Years
  • 1
    Publication Date: 2019-07-10
    Description: We present a composite spectrum of Trojan asteroid 624 Hektor, 0.3-3.6 microns, which shows that there is no discernible 3-micron absorption band. Such a band would indicate the presence of OH or H2O- bearing silicate minerals, or macromolecular carbon-rich organic material of the kind seen on the low-albedo hemisphere of Saturn's satellite Iapetus (Owen et al. 2000). The absence of spectral structure is itself indicative of the absence of the nitrogen-rich tholins (which show a distinctive absorption band attributed to N-H). The successful models in this study all incorporate the mineral pyroxene (Mg, Fe SiO3, the composition of hypersthene), which matches the red color of Hektor. Pyroxene is a mafic mineral common in terrestrial and lunar lavas, and is also seen in Main Belt asteroid spectra. An upper limit to the amount of crystalline H20 ice (30-micron grains) in the surface layer of Hektor is 3 weight percent. The upper limit for serpentine, as a representative of hydrous silicates, is much less stringent, at 40 percent, based on the shape of the spectral region around 3 gm. Thus, the spectrum at 3 gm does not preclude the presence of a few weight percent of volatile material in the surface layer of Hektor. All of the models we calculated require elemental carbon to achieve the low geometric albedo that matches Hektor. This carbon could be of organic or inorganic origin. By analogy, other D-type asteroids could achieve their red color, low albedo, and apparent absence of phyllosilicates, from compositions similar to the models presented here.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...