ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2020-07-10
    Description: Underwater sensing and remote telemetry tasks necessitate the accurate geo-location of sensor data series, which often requires underwater acoustic arrays. These are ensembles of hydrophones that can be jointly operated in order to, e.g., direct acoustic energy towards a given direction, or to estimate the direction of arrival of a desired signal. When the available equipment does not provide the required level of accuracy, it may be convenient to merge multiple transceivers into a larger acoustic array, in order to achieve better processing performance. In this paper, we name such a structure an “array of opportunity” to signify the often inevitable sub-optimality of the resulting array design, e.g., a distance between nearest array elements larger than half the shortest acoustic wavelength that the array would receive. The most immediate consequence is that arrays of opportunity may be affected by spatial ambiguity, and may require additional processing to avoid large errors in wideband direction of arrival (DoA) estimation, especially as opposed to narrowband processing. We consider the design of practical algorithms to achieve accurate detections, DoA estimates, and position estimates using wideband arrays of opportunity. For this purpose, we rely jointly on DoA and rough multilateration estimates to eliminate spatial ambiguities arising from the array layout. By means of emulations that realistically reproduce underwater noise and acoustic clutter, we show that our algorithm yields accurate DoA and location estimates, and in some cases it allows arrays of opportunity to outperform properly designed arrays. For example, at a signal-to-noise ratio of –20 dB, a 15-element array of opportunity achieves lower average and median localization error (27 m and 12 m, respectively) than a 30-element array with proper λ / 2 element spacing (33 m and 15 m, respectively). We confirm the good accuracy of our approach via emulation results, and through a proof-of-concept lake experiment, where our algorithm applied to a 10-element array of opportunity achieves a 90th-percentile DoA estimation error of 4 ∘ and a 90th-percentile total location error of 5 m when applied to a real 10-element array of opportunity.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-05-27
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-17
    Description: The pervasiveness of online social networks has reshaped the way people access information. Online social networks make it common for users to inform themselves online and share news among their peers, but also favor the spreading of both reliable and fake news alike. Because fake news may have a profound impact on the society at large, realistically simulating their spreading process helps evaluate the most effective countermeasures to adopt. It is customary to model the spreading of fake news via the same epidemic models used for common diseases; however, these models often miss concepts and dynamics that are peculiar to fake news spreading. In this paper, we fill this gap by enriching typical epidemic models for fake news spreading with network topologies and dynamics that are typical of realistic social networks. Specifically, we introduce agents with the role of influencers and bots in the model and consider the effects of dynamical network access patterns, time-varying engagement, and different degrees of trust in the sources of circulating information. These factors concur with making the simulations more realistic. Among other results, we show that influencers that share fake news help the spreading process reach nodes that would otherwise remain unaffected. Moreover, we emphasize that bots dramatically speed up the spreading process and that time-varying engagement and network access change the effectiveness of fake news spreading.
    Electronic ISSN: 1999-5903
    Topics: Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...