ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2004-12-15
    Description: Relationships between atmospheric blocking over the Alaskan region of the northeast Pacific, referred to as Alaskan blocking, and weather extremes over North America during boreal winter 1979–2000 are examined. A total of 37 atmospheric blocking events are identified with durations ranging from 8 to 25 days and a mean duration of 11.3 days. A total of 15.6% of the days during the boreal winter belonged to an Alaskan blocking event. The number of blocked days over the Alaskan region was found to be sensitive to the phase of the ENSO cycle with a reduced (increased) number of blocked days during El Niño (La Niña/neutral) winters. The average number of blocked days during El Niño winters was 12, compared with 31.2 and 27 for neutral and La Niña winters, respectively. The mature Alaskan block possesses characteristics, which are typical of blocking episodes, including the equivalent barotropic structure of the blocking anticyclone, the meridional flow both upstream and downstream of the block, the equatorward shift of the Pacific storm track, downstream development of 500-hPa geopotential height, and sea level pressure anomalies over North America. The surface temperature analysis revealed a significant shift in the daily mean surface temperature distribution during Alaskan blocking toward colder temperatures in the region extending from the Yukon southeastward to the southern plains of the United States, associated with a reduced variance of surface temperatures. Over extreme western Alaska there is a shift in the daily mean surface temperature distribution toward warmer temperatures. The shift toward colder (warmer) daily mean surface temperatures is also accompanied by a shift in the tails of the distribution toward more extreme cold (warm) days in these two regions. During Alaskan blocking, the regions of southern California, the Southwest, and the Intermountain West all possess a higher frequency of heavy precipitation days when compared with the long-term winter climatology. Over the eastern half of the United States, the Ohio Valley and the southeast regions experience a greater percentage of heavy precipitation days during Alaskan blocking.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-05-01
    Description: During the 2004 North American Monsoon Experiment (NAME) field campaign, an extensive set of enhanced atmospheric soundings was gathered over the southwest United States and Mexico. Most of these soundings were assimilated into the NCEP operational global and regional data assimilation systems in real time. This presents a unique opportunity to carry out a series of data assimilation experiments to examine their influence on the NCEP analyses and short-range forecasts. To quantify these impacts, several data-withholding experiments were carried out using the global Climate Data Assimilation System (CDAS), the Regional Climate Data Assimilation System (RCDAS), and the three-dimensional variational data assimilation (3DVAR) Eta Model Data Assimilation System (EDAS) for the NAME 2004 enhanced observation period (EOP). The impacts of soundings vary between the assimilation systems examined in this study. Overall, the influence of the enhanced soundings is concentrated over the core monsoon area. While differences at upper levels are small, the differences at lower levels are more substantial. The coarse-resolution CDAS does not properly resolve the Gulf of California (GoC), so the assimilation system is not able to exploit the additional soundings to improve characteristics of the Gulf of California low-level jet (GCLLJ) and the associated moisture transport in the GoC region. In contrast, the GCLLJ produced by RCDAS is conspicuously stronger than the observations, though the problem is somewhat alleviated with additional special NAME soundings. For EDAS, soundings improve the intensity and position of the Great Plains low-level jet (GPLLJ). The soundings in general improve the analyses over the areas where the assimilation system has the largest uncertainties and errors. However, the differences in regional analyses owing to the soundings are smaller than the differences between the two regional data assimilation systems.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...