ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 19 (1980), S. 3245-3253 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 19 (1980), S. 5864-5869 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Summary RNase E contains a large non-catalytic region that binds RNA and the protein components of the Escherichia coli RNA degradosome. The rne gene was replaced with alleles encoding deletions in the non-catalytic part of RNase E. All the proteins are stable in vivo. RNase E activity was tested using a PT7–lacZ reporter gene, the message of which is particularly sensitive to degradation because translation is uncoupled from transcription. The non-catalytic region has positive and negative effectors of mRNA degradation. Disrupting RhlB and enolase binding resulted in hypoactivity, whereas disrupting PNPase binding resulted in hyperactivity. Expression of the mutant proteins in vivo anticorrelates with activity showing that autoregulation compensates for defective function. There is no simple correlation between RNA binding and activity in vivo. An allele (rne131), expressing the catalytic domain alone, was put under Plac control. In contrast to rne+, low expression of rne131 severely affects growth. Even with autoregulation, all the mutants are less fit when grown in competition with wild type. Although the catalytic domain of RNase E is sufficient for viability, our work demonstrates that elements in the non-catalytic part are necessary for normal activity in vivo.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: In Escherichia coli, ribonucleases are effectors that rapidly modulate the levels of mRNAs for adaptation to a changing environment. Factors involved in the regulation of these ribonucleases can be relevant for mRNA stability. RNase II is one of the main ribonucleases responsible for exonucleolytic activity in E. coli extracts. We have identified and characterized a new E. coli gene, which was named gmr (gene modulating RNase II). The results demonstrate that a deletion of gmr can be associated with changes in RNase II levels and activity. Western analysis and exoribonuclease activity assays showed a threefold increase in RNase II in the gmr deletion strain. Gmr does not affect RNase II mRNA, but modulates RNase II at the level of protein stability. RNase II protein turnover is slower in the gmr deletion strain. We also show that RNase II levels change in different media, and that this regulation is abolished in a strain lacking gmr. The data presented here show that the regulation of ribonucleolytic activity can depend on growth conditions, and this regulation can be mediated by factors that are not RNases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Poly(A) polymerase I (PAP I) of Escherichia coli is a member of the nucleotidyltransferase (Ntr) superfamily that includes the eukaryotic PAPs and all the known tRNA CCA-adding enzymes. Five highly conserved aspartic acids in the putative catalytic site of PAP I were changed to either alanine or proline, demonstrating their importance for polymerase activity. A glycine that is absolutely conserved in all Ntrs was also changed yielding a novel mutant protein in which ATP was wastefully hydrolysed in a primer-independent reaction. This is the first work to characterize the catalytic site of a eubacterial PAP and, despite the conservation of certain sequences, we predict that the overall architecture of the eukaryotic and eubacterial active sites is likely to be different. Binding sites for RNase E, a component of the RNA degradosome, and RNA were mapped by North-western and Far-western blotting using truncated forms of PAP I. Additional protein–protein interactions were detected between PAP I and CsdA, RhlE and SrmB, suggesting an unexpected connection between PAP I and these E. coli DEAD box RNA helicases. These results show that the functional organization of PAP I is similar to the eukaryotic PAPs with an N-terminal catalytic domain, a C-terminal RNA binding domain and sites for the interaction with other protein factors.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 26 (1997), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The Escherichia coli degradosome is a multienzyme complex with four major protein components: the endoribonuclease RNase E, the exoribonuclease PNPase, the RNA helicase RhlB and enolase. The first three of these proteins are known to have important functions in mRNA processing and degradation. In this work, we identify an additional component of the degradosome, polyphosphate kinase (PPK), which catalyses the reversible polymerization of the γ-phosphate of ATP into polyphosphate (poly(P)). An E. coli strain deleted for the ppk gene showed increased stability of the ompA mRNA. Purified His-tagged PPK was shown to bind RNA, and RNA binding was prevented by hydrolysable ATP. Chemical modification of RNA by PPK, for example the addition or removal of 3′ or 5′ terminal phosphates, could not be detected. However, polyphosphate was found to inhibit RNA degradation by the degradosome in vitro. This inhibition was overcome by the addition of ADP, required for the degradation of polyphosphate and for the regeneration of ATP by PPK in the degradosome. Thus, PPK in the degradosome appears to maintain an appropriate microenvironment, removing inhibitory polyphosphate and NDPs and regenerating ATP.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The non-catalytic region of Escherichia coli RNase E contains a protein scaffold that binds to the other components of the RNA degradosome. Alanine scanning yielded a mutation, R730A, that disrupts the interaction between RNase E and the DEAD-box RNA helicase, RhlB. We show that three other DEAD-box helicases, SrmB, RhlE and CsdA also bind to RNase E in vitro. Their binding differs from that of RhlB because it is not affected by the R730A mutation. Furthermore, the deletion of residues 791–843, which does not affect RhlB binding, disrupts the binding of SrmB, RhlE and CsdA. Therefore, RNase E has at least two RNA helicase binding sites. Reconstitution of a complex containing the protein scaffold of RNase E, PNPase and RhlE shows that RhlE can furnish an ATP-dependent activity that facilitates the degradation of structured RNA by PNPase. Thus, RhlE can replace the function of RhlB in vitro. The results in the accompanying article show that CsdA can also replace RhlB in vitro. Thus, RhlB, RhlE and CsdA are interchangeable in in vitro RNA degradation assays.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: In Escherichia coli, REP-stabilizers are structural elements in polycistronic messages that protect 5′-proximal cistrons from 3′→5′ exonucleolytic degradation. The stabilization of a protected cistron can be an important determinant in the level of gene expression. Our results suggest that RNase E, an endoribonuclease, initiates the degradation of REP-stabilized mRNA. However, subsequent degradation of mRNA fragments containing a REP-stabilizer poses a special challenge to the mRNA degradation machinery. Two enzymes, the DEAD-box RNA helicase, RhlB and poly(A) polymerase (PAP) are required to facilitate the degradation of REP-stabilizers by polynucleotide phosphorylase (PNPase). This is the first in vivo evidence that these enzymes are required for the degradation of REP-stabilizers. Furthermore, our results show that REP degradation by RhlB and PNPase requires their association with RNase E as components of the RNA degradosome, thus providing the first in vivo evidence that this ribonucleolytic multienzyme complex is involved in the degradation of structured mRNA fragments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 381 (1996), S. 169-172 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] In addition to RNase E and PNPase, the degradosome contains two major proteins of relative molecular masses 50,000 and 48,000 (p50 and p48, respectively) which have not previously been characterized1'2. To identify these proteins, we determined the amino-terminal amino-acid sequence of p50 as ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 219 (1989), S. 39-48 
    ISSN: 1617-4623
    Keywords: Bacteriophage T4 transcription ; Gene 32 ; Messenger RNA processing ; Ribonuclease E ; ryptic promoters
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Bacteriophage T4 gene 32 lies at the 3′ end of a complex transcription unit which includes genes 33, 59, and several open reading frames. In the course of an infection, four major transcripts are synthesized from this unit: two overlapping polycistronic transcripts about 3800 and 2800 nucleotides in length, and two monocistronic gene 32 transcripts about 1150 and 1100 nucleotides in length. These transcripts are made at different times in infection and the polycistronic transcripts have segmental differences in stability. Messenger RNA processing yields a 1025 nucleotide monocistronic gene 32 transcript, and a 135 nucleotide transcript containing part of the gene 59 coding sequence. Processing depends on Escherichia coli encoded ribonuclease E. This pattern of transcription and processing leads to the synthesis of gene 32 mRNA throughout infection, whereas transcripts encoding the upstream genes are present only early in infection. The 3800 nucleotide polycistronic transcript initiates at a promoter that does not require T4 encoded factors for activity. However, full-length synthesis of this transcript depends on the T4 mot gene product. The region upstream of gene 32 also contains four E. coli-like promoters that are active on chimeric plasmids in uninfected cells, but inactive in bacteriophage T4. The location of these cryptic T4 promoters is intriguing in that they lie near the 5′ ends of open reading frame B, gene 59 and gene 32. They could play a role in phage development under particular conditions of growth or in bacterial hosts other than those examined here.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...