ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-10-29
    Description: The aim of the present work is to utilize a new functionality within the Weather Research and Forecasting model coupled with Chemistry (WRF–Chem) that allows simulating emission, transport, and settling of pollutants released during the Etna 2015 volcanic activities. This study constitutes the first systematic application of the WRF–Chem online-based approach to a specific Etna volcanic eruption, with possible effects involving the whole Mediterranean area. In this context, the attention has been focused on the eruption event, recorded from 3–7 December 2015, which led to the closure of the nearby Catania International Airport. Quantitative meteorological forecasts, analyses of Etna volcanic ash transport, and estimates of the ash ground deposition have been performed. In order to test the performance of the proposed approach, the model outputs have been compared with data provided by satellite sensors and Doppler radars. As a result, it emerges that, as far as the selected eruption event is concerned, the WRF–Chem model reasonably reproduces the distribution of SO2 and of volcanic ash. In addition, this modeling system may provide valuable support both to airport management and to local stakeholders including public administrations.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-18
    Description: Carbon nanotubes (CNTs) thanks to their unique physical properties have been employed in several innovative applications particularly for energy storage applications. Certain technical features of carbon nanotubes, such as their remarkable specific surface, mechanical strength, as well as their electron and thermal conductivity are suitable for these applications. Furthermore, in order to produce a device, thermal treatment is needed and for this reason the trend of thermal decomposition of the tubes plays a key role in the integration process. The main purpose of this work was to characterize the thermal behavior of CNTs. In particular, we show the findings of an experimental study on CNTs performed by means of Fourier Transform InfraRed and Raman spectroscopy investigations. The collected FTIR and Raman spectra were analyzed by using two innovative procedures: spectral distance (SD) and wavelet cross correlation (XWT). From both analyses, a relaxation temperature value emerged of T = 206 °C, corresponding to a relaxation inflection point. Such a system relaxation phenomenon, occurring in the fiber CNTs, could be connected with the decay of the mechanical properties due to a decrease in the alignment and compaction of the fibers.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-03-02
    Description: Experimental findings obtained by FTIR and Raman spectroscopies on montmorillonite-water mixtures at three concentration values are presented. To get some insight into the hydrogen bond network of water within the montmorillonite network, FTIR and Raman spectra have been collected as a function of time and then analyzed following two complementary approaches: An analysis of the intramolecular OH stretching mode in the spectral range of 2700–3900 cm−1 in terms of two Gaussian components, and an analysis of the same OH stretching mode by wavelet cross-correlation. The FTIR and Raman investigations have been carried as a function of time for a montmorillonite-water weight composition (wt%) of 20%–80%, 25%–75%, and 35%–65%, until the dehydrated state where the samples appear as a homogeneous rigid layer of clay. In particular, for both the FTIR and Raman spectra, the decomposition of the OH stretching band into a “closed” and an “open” contribution and the spectral wavelet analysis allow us to extract quantitative information on the time behavior of the system water content. It emerges that, the total water contribution inside the montmorillonite structure decreases as a function of time. However, the relative weight of the ordered water contribution diminishes more rapidly while the relative weight of the disordered water contribution increases, indicating that a residual water content, characterized by a highly structural disorder, rests entrapped in the montmorillonite layer structure for a longer time. From the present study, it can be inferred that the montmorillonite dehydration process promotes the layer self-assembly.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-04-18
    Description: Recent decades have registered the hottest temperature variation in instrumentally recorded data history. The registered temperature rise is particularly significant in the so-called hot spot or sentinel regions, characterized by higher temperature increases in respect to the planet average value and by more marked connected effects. In this framework, in the present work, following the climate stochastic resonance model, the effects, due to a temperature increase independently from a specific trend, connected to the 105 year Milankovitch cycle were tested. As a result, a breaking scenario induced by global warming is forecasted. More specifically, a wavelet analysis, innovatively performed with different sampling times, allowed us, besides to fully characterize the cycles periodicities, to quantitatively determine the stochastic resonance conditions by optimizing the noise level. Starting from these system resonance conditions, numerical simulations for increasing planet temperatures have been performed. The obtained results show that an increase of the Earth temperature boosts a transition towards a chaotic regime where the Milankovitch cycle effects disappear. These results put into evidence the so-called threshold effect, namely the fact that also a small temperature increase can give rise to great effects above a given threshold, furnish a perspective point of view of a possible future climate scenario, and provide an account of the ongoing registered intensity increase of extreme meteorological events.
    Electronic ISSN: 2225-1154
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-02-18
    Description: Pollution due to natural radioactivity is still a poorly known topic among young people. This paper describes the contents for an introductive university course or lecture conceived in a multitask program. Along with a so-called “flipped” configuration, where students are able to receive didactic materials prior to face-to-face lessons, multimedia contents should be shown to the students, who are at first faced with known anthropogenic accidents. Moreover, field and laboratory experimental activities can provide further insight regarding the radiological assessment strategies. Here, the most important principles and effects concerning the radioactive decay of naturally occurring radionuclides are described. The greatest part of natural radioactivity derives from terrestrial radionuclides occurring in soil and rocks. The radionuclides are atoms characterized by an excess of nuclear energy, which makes them unstable giving rise to decay. The radionuclides emit gamma rays, as well as alpha and/or beta particles. People are constantly subjected to indoor and outdoor exposure due to natural radioactivity. The possible sources can be considered as external due to natural sources located outside the human body, and internal provoked by ingestion or inhalation of radionuclides. The indoor exposure from natural sources is mainly related to radiation from building materials and to radon entering buildings from soils and rocks though cracks in walls and floor. The outdoor exposure mainly accounts for the terrestrial gamma radiation that crosses the soil-air interface, and for the radon emitted from soils in seismic and volcanic areas. In this regard, there is a strong relationship between health diseases (e.g. cancer, necrosis and DNA and RNA modifications) and high-levels of natural radioactivity. For this reason, the radiological assessment of the most vulnerable areas represents a key point in order to mitigate hazard and risk connected to the human exposure to natural radioactivity.
    Description: Published
    Description: A39
    Description: 7SR AMBIENTE – Servizi e ricerca per la società
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-02-21
    Description: This contribution is intended to answer the question of why in teaching approaches it is important to speak about territory? The answer to the question is driven by the consideration that the territory, including the established human activities, encompasses the history, the events and the culture of the people who populated it. On this regard, it should be noted that the relationship between natural elements and human activities that refer to a given territory has a dynamic character since both influence each other and help to write the history of that place. In this framework, the proposed method is used as an interdisciplinary approach to the theme of clay minerals. These latter are hydrous aluminium phyllosilicates, with variable amounts of iron, magnesium, alkali metals, alkaline earths. They are the main constituents of soils, and have been used by humans since ancient times in agriculture and manufacturing. For this reason, clays played a basic role for the human civilization process since its earliest periods. Clays are recognized amongst the most important rock products, both as raw material and in the form of pottery, bricks, tiles, terra-cotta and many other tools for daily use. This is particular evident in Sicily, where, since ancient times, the availability of local clay sources favoured the diffusion of clay-artefacts and related workshops found over the territory. This paper makes reference to a lecture addressed to university students and includes: i) the description of the main mineralogical features and properties of clay minerals; ii) a brief discussion on the role played by clays in terms of clay-artefacts production in the historical and cultural evolution of the Messina territory; iii) a description of local clay outcrops; iiii) a presentation of the main kilns over the Messina territory, and in particular of unpublished archaeological information on the S. Pier Niceto kilns. The proposed approach aims to increase the interest of students towards the significant aspects that affected the social-economic growth of the Messina’s territory and on the importance that geo-materials had in the technological evolution of its civilization process.
    Description: Published
    Description: A43
    Description: 7SR AMBIENTE – Servizi e ricerca per la società
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-03-29
    Description: During the autumn season, Sicily is often affected by severe weather events, such as self-healing storms called V-shaped storms. These phenomena cause significant total rainfall quantities in short time intervals in localized spatial areas. In this framework, this study analyzes the meteorological event recorded on 11–12 November 2019 in Sicily (southern Italy), using the Weather Research and Forecasting (WRF) model with a horizontal spatial grid resolution of 3 km. It is important to note that, in this event, the most significant rainfall accumulations were recorded in eastern Sicily. In particular, the weather station of Linguaglossa North Etna (Catania) recorded a total rainfall of 293.6 mm. The precipitation forecasting provided by the WRF model simulation has been compared with the data recorded by the meteorological stations located in Sicily. In addition, a further simulation was carried out using the Four-Dimensional Data Assimilation (FDDA) technique to improve the model capability in the event reproduction. In this regard, in order to evaluate which approach provides the best performance (with or without FDDA), the Root Mean Square Error (RMSE) and dichotomous indexes (Accuracy, Threat Score, BIAS, Probability of Detection, and False Alarm Rate) were calculated.
    Description: Published
    Description: 390
    Description: 7SR AMBIENTE – Servizi e ricerca per la società
    Description: JCR Journal
    Keywords: WRF model ; severe weather events ; Numerical Weather Prediction ; precipitation forecast ; FDDA
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-01-17
    Description: One of the most important challenges in atmospheric science and, in particular, in numerical weather predictions (NWP), is to forecast extreme weather events. These events affect very localized areas in space, recording high pluviometric accumulations in short time intervals. In this context, with the present study, we aim to analyze the extreme meteorological event that occurred in the northwestern and eastern parts of Sicily on 15 July 2020, by using the weather research and forecasting (WRF) model. In particular, during the afternoon, several storms affected those areas, causing intense precipitation, with maximum rainfall concentrated on the city of Palermo and in the Etna area. The rainfall at the end of the event reached 134 mm in Palermo and 49 mm in Catania, recorded by the Sicilian network meteorological stations. Because the event at Palermo was strongly localized, the analyses have been carried out by employing different sets of numerical simulations, by means of the WRF model, with horizontal spatial grid resolutions of 9, 3, and 1 km. Furthermore, the output of the performed simulation has been used to assess the thermodynamic profile and atmospheric instability indices. It allowed us to check the adopted parameters against those usually implemented in the flash flood scenario. By using the finest grid resolutions (3 and 1 km), the WRF model was able to provide more accurate predictions of the rainfall accumulation, even if they were strongly localized. Conversely, the implementation of less-refined spatial domain (9 km) did not allow us to obtain predictive estimates of precipitation
    Description: Published
    Description: 1717
    Description: 7A. Geofisica per il monitoraggio ambientale
    Description: JCR Journal
    Keywords: WRF model ; Extreme weather events ; Numerical simulations ; Rainfall accumulations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...