ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 8 (1996), S. 2019-2031 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The properties and computation of Stokes flow due to a periodic array of point forces exerted in the interior of a fluid-filled cylindrical tube with an arbitrary cross-sectional shape are discussed. It is shown that the relationship between the pressure drop and the axial flow rate occurring when the point forces have a component parallel to the generators can be deduced immediately from a knowledge of the velocity profile corresponding to unidirectional pressure-driven flow. A boundary-integral method for computing the associated Green's function of Stokes flow is developed and implemented in a numerical procedure that exploits the cylindrical boundary geometry to improve the accuracy of the results and efficiency of the computations. Streamline patterns of the flow within tubes with circular, elliptical, and nearly square shapes are presented and discussed with reference to flow reversal. In the limit as the separation between the point forces becomes increasingly larger than the typical size of the cross section of the tube, we recover the flow due to a solitary point force, and the numerical result are in agreement with those derived by previous authors for the particular case of a tube with a circular cross-sectional shape. The flow due to the point forces is then coupled with the boundary integral representation to develop asymptotic expansions for the surface stress, force, torque, and higher moments of the traction exerted on a small suspended particle that belongs to a periodic array. Each particle may translate and rotate while the ambient fluid undergoes pressure-driven flow. The coefficients of the asymptotic expansion are related to the non-singular part of the Green's function and its spatial derivatives, evaluated at the location of the point force. These quantities are computed and plotted for several cross-sectional shapes. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1996-08-01
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1998-03-10
    Description: We study the pressure-driven transient motion of a periodic file of deformable liquid drops through a cylindrical tube with circular cross-section, at vanishing Reynolds number. The investigations are based on numerical solutions of the equations of Stokes flow obtained by the boundary-integral method. It is assumed that the viscosity and density of the drops are equal to those of the suspending fluid, and the interfaces have constant tension. The mathematical formulation uses the periodic Green's function of the equations of Stokes flow in a domain that is bounded externally by a cylindrical tube, which is computed by tabulation and interpolation. The surface of each drop is discretized into quadratic triangular elements that form an unstructured interfacial grid, and the tangential velocity of the grid-points is adjusted so that the mesh remains regular for an extended but limited period of time. The results illustrate the nature of drop motion and deformation, and thereby extend previous studies for axisymmetric flow and small-drop small-deformation theories. It is found that when the capillary number is sufficiently small, the drops start deforming from a spherical shape, and then reach slowly evolving quasi-steady shapes. In all cases, the drops migrate radially toward the centreline after an initial period of rapid deformation. The apparent viscosity of the periodic suspension is expressed in terms of the effective pressure gradient necessary to drive the flow at constant flow rate. For a fixed period of separation, the apparent viscosity of a non-axisymmetric file is found to be higher than that of an axisymmetric file. In the case of non-axisymmetric motion, the apparent viscosity reaches a minimum at a certain ratio of the drop separation to tube radius. Drops with large effective radii to tube radius ratios develop slipper shapes, similar to those assumed by red blood cells in flow through capillaries, but only for capillary numbers in excess of a critical value.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2000-06-30
    Description: We study the flow obtained from a three-layer, eddy-resolving quasigeostrophic ocean circulation model subject to an applied wind stress curl. For this model we will consider transport between the northern and southern gyres separated by an eastward jet. We will focus on the use of techniques from dynamical systems theory, particularly lobe dynamics, in the forming of geometric structures that govern transport. By "govern", we mean they can be used to compute Lagrangian transport quantities, such as the flux across the jet. We will consider periodic, quasiperiodic, and chaotic velocity fields, and thus assess the effectiveness of dynamical systems techniques in flows with progressively more spatio-temporal complexity. The numerical methods necessary to implement the dynamical systems techniques and the significance of lobe dynamics as a signature of specific "events", such as rings pinching off from a meandering jet, are also discussed.
    Print ISSN: 1023-5809
    Electronic ISSN: 1607-7946
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2001-04-30
    Description: We study the flow obtained from a three-layer, eddy-resolving quasigeostrophic ocean circulation model subject to an applied wind stress curl. For this model we will consider transport between the northern and southern gyres separated by an eastward jet. We will focus on the use of techniques from dynamical systems theory, particularly lobe dynamics, in the forming of geometric structures that govern transport. By "govern", we mean they can be used to compute Lagrangian transport quantities, such as the flux across the jet. We will consider periodic, quasiperiodic, and chaotic velocity fields, and thus assess the effectiveness of dynamical systems techniques in flows with progressively more spatio-temporal complexity. The numerical methods necessary to implement the dynamical systems techniques and the significance of lobe dynamics as a signature of specific "events", such as rings pinching off from a meandering jet, are also discussed.
    Print ISSN: 1023-5809
    Electronic ISSN: 1607-7946
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...