ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-10-15
    Description: We derive the total cold gas, atomic hydrogen, and molecular gas masses of approximately 24 000 galaxies covering four decades in stellar mass at redshifts 0.5 〈 z 〈 3.0, taken from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey survey. Our inferences are based on the inversion of a molecular hydrogen based star formation law, coupled with a prescription to separate atomic and molecular gas. We find that: (1) there is an increasing trend between the inferred cold gas (H i and H 2 ), H i , and H 2 mass and the stellar mass of galaxies down to stellar masses of 10 8 M already in place at z = 3; (2) the molecular fractions of cold gas increase with increasing stellar mass and look-back time; (3) there is hardly any evolution in the mean H i content of galaxies at fixed stellar mass; (4) the cold gas fraction and relative amount of molecular hydrogen in galaxies decrease at a relatively constant rate with time, independent of stellar mass; (5) there is a large population of low stellar mass galaxies dominated by atomic gas. These galaxies are very gas rich, but only a minor fraction of their gas is molecular; 6) the ratio between star formation rate (SFR) and inferred total cold gas mass (H i + H 2 ) of galaxies (i.e. star formation efficiency; SFE) increases with star formation at fixed stellar masses. Due to its simplicity, the presented approach is valuable to assess the impact of selection biases on small samples of directly observed gas masses and to extend scaling relations down to stellar mass ranges and redshifts that are currently difficult to probe with direct measurements of gas content.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-08-30
    Description: We combine a semi-analytic model of galaxy formation, tracking atomic and molecular phases of cold gas, with a three-dimensional radiative-transfer and line tracing code to study the sub-mm emission from atomic and molecular species (CO, HCN, [C i ], [C ii ], [O i ]) in galaxies. We compare the physics that drives the formation of stars at the epoch of peak star formation (SF) in the Universe ( z  = 2.0) with that in local galaxies. We find that normal star-forming galaxies at high redshift have much higher CO-excitation peaks than their local counterparts and that CO cooling takes place at higher excitation levels. CO line ratios increase with redshift as a function of galaxy star-formation rate, but are well correlated with H 2 surface density independent of redshift. We find an increase in the [O i ]/[C ii ] line ratio in typical star-forming galaxies at z  = 1.2 and z  = 2.0 with respect to counterparts at z  = 0. Our model results suggest that typical star-forming galaxies at high redshift consist of much denser and warmer star-forming clouds than their local counterparts. Galaxies belonging to the tail of the SF activity peak at z  = 1.2 are already less dense and cooler than counterparts during the actual peak of SF activity ( z  = 2.0). We use our results to discuss how future ALMA surveys can best confront our predictions and constrain models of galaxy formation.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2003-08-16
    Description: Plants attacked by pathogens rapidly deposit callose, a beta-1,3-glucan, at wound sites. Traditionally, this deposition is thought to reinforce the cell wall and is regarded as a defense response. Surprisingly, here we found that powdery mildew resistant 4 (pmr4), a mutant lacking pathogen-induced callose, became resistant to pathogens, rather than more susceptible. This resistance was due to mutation of a callose synthase, resulting in a loss of the induced callose response. Double-mutant analysis indicated that blocking the salicylic acid (SA) defense signaling pathway was sufficient to restore susceptibility to pmr4 mutants. Thus, callose or callose synthase negatively regulates the SA pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nishimura, Marc T -- Stein, Monica -- Hou, Bi-Huei -- Vogel, John P -- Edwards, Herb -- Somerville, Shauna C -- New York, N.Y. -- Science. 2003 Aug 15;301(5635):969-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, Carnegie Institution, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12920300" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Arabidopsis/cytology/genetics/*metabolism/*microbiology ; Ascomycota/*physiology ; Cell Death ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Genes, Plant ; Glucans/metabolism ; Glucosyltransferases/*genetics/metabolism ; *Membrane Proteins ; Mutation ; Oligonucleotide Array Sequence Analysis ; Phenotype ; *Plant Diseases ; Plant Leaves/metabolism ; Salicylic Acid/*metabolism ; *Schizosaccharomyces pombe Proteins ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-06-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Somerville, C -- Briscoe, J -- New York, N.Y. -- Science. 2001 Jun 22;292(5525):2217.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11423621" target="_blank"〉PubMed〈/a〉
    Keywords: Crops, Agricultural/*genetics/microbiology/parasitology ; *Genetic Engineering ; *Plant Diseases ; Plants/genetics/microbiology/parasitology ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-07-20
    Description: Nucleotide sequencing of the Arabidopsis genome is nearing completion, sequencing of the rice genome has begun, and large amounts of expressed sequence tag information are being obtained for many other plants. There are many opportunities to use this wealth of sequence information to accelerate progress toward a comprehensive understanding of the genetic mechanisms that control plant growth and development and responses to the environment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Somerville, C -- Somerville, S -- New York, N.Y. -- Science. 1999 Jul 16;285(5426):380-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Carnegie Institution of Washington, Department of Plant Biology, 260 Panama Street, Stanford CA 94305, USA. crs@andrew2.stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10411495" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics ; Chromosomes ; Expressed Sequence Tags ; Gene Library ; Genes, Plant ; Genetic Variation ; *Genome, Plant ; Mutation ; Oligonucleotide Array Sequence Analysis ; Oryza/genetics ; Plant Physiological Phenomena ; Plants/*genetics ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-24
    Description: The completion of the Arabidopsis sequence will be followed by a new ten-year project that will determine the function of all angiosperm genes. Funding for the U.S. component of this multinational project will originate from a new initiative from the U.S. National Science Foundation called the 2010 Project. Progress toward completion of this ambitious project will necessitate significant changes in how the plant biology community selects and approaches research objectives. The plan envisions that the project will facilitate the development of a computational model of a virtual plant that will allow predictive queries about basic mechanisms underlying plant growth and development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Somerville, C -- Dangl -- New York, N.Y. -- Science. 2000 Dec 15;290(5499):2077-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, Carnegie Institution, Stanford, CA 94305, USA. crs@andrew2.stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11187833" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics ; Databases, Factual ; Gene Expression Profiling ; *Genes, Plant ; Genome, Plant ; *Genomics ; International Cooperation ; Oligonucleotide Array Sequence Analysis ; Plant Proteins/genetics/*physiology ; Research Support as Topic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1997-07-04
    Description: The plant growth regulator gibberellin (GA) has a profound effect on shoot development and promotes developmental transitions such as flowering. Little is known about any analogous effect GA might have on root development. In a screen for mutants, Arabidopsis plants carrying a mutation designated pickle (pkl) were isolated in which the primary root meristem retained characteristics of embryonic tissue. Expression of this aberrant differentiation state was suppressed by GA. Root tissue from plants carrying the pkl mutation spontaneously regenerated new embryos and plants.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ogas, J -- Cheng, J C -- Sung, Z R -- Somerville, C -- New York, N.Y. -- Science. 1997 Jul 4;277(5322):91-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, Carnegie Institution of Washington, 290 Panama Street, Stanford, CA 94305, USA. jogas@andrew.stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9204906" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*cytology/drug effects/genetics/metabolism ; *Arabidopsis Proteins ; Cell Differentiation/drug effects ; Fatty Acids/analysis ; Genes, Plant ; Germination ; Gibberellins/*metabolism/pharmacology ; Meristem/*cytology/drug effects/metabolism ; Mutation ; Phenotype ; Plant Growth Regulators/pharmacology ; Plant Proteins/genetics ; Plant Roots/*cytology/drug effects/metabolism ; Signal Transduction ; Triazoles/pharmacology ; Triglycerides/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-11-26
    Description: Sugar efflux transporters are essential for the maintenance of animal blood glucose levels, plant nectar production, and plant seed and pollen development. Despite broad biological importance, the identity of sugar efflux transporters has remained elusive. Using optical glucose sensors, we identified a new class of sugar transporters, named SWEETs, and show that at least six out of seventeen Arabidopsis, two out of over twenty rice and two out of seven homologues in Caenorhabditis elegans, and the single copy human protein, mediate glucose transport. Arabidopsis SWEET8 is essential for pollen viability, and the rice homologues SWEET11 and SWEET14 are specifically exploited by bacterial pathogens for virulence by means of direct binding of a bacterial effector to the SWEET promoter. Bacterial symbionts and fungal and bacterial pathogens induce the expression of different SWEET genes, indicating that the sugar efflux function of SWEET transporters is probably targeted by pathogens and symbionts for nutritional gain. The metazoan homologues may be involved in sugar efflux from intestinal, liver, epididymis and mammary cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3000469/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3000469/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Li-Qing -- Hou, Bi-Huei -- Lalonde, Sylvie -- Takanaga, Hitomi -- Hartung, Mara L -- Qu, Xiao-Qing -- Guo, Woei-Jiun -- Kim, Jung-Gun -- Underwood, William -- Chaudhuri, Bhavna -- Chermak, Diane -- Antony, Ginny -- White, Frank F -- Somerville, Shauna C -- Mudgett, Mary Beth -- Frommer, Wolf B -- 1R01DK079109/DK/NIDDK NIH HHS/ -- F32GM083439-02/GM/NIGMS NIH HHS/ -- R01 DK079109/DK/NIDDK NIH HHS/ -- R01 DK079109-01/DK/NIDDK NIH HHS/ -- R01 DK079109-02/DK/NIDDK NIH HHS/ -- R01 DK079109-03/DK/NIDDK NIH HHS/ -- R01 DK079109-03S1/DK/NIDDK NIH HHS/ -- R01 DK079109-04/DK/NIDDK NIH HHS/ -- R01 GM068886/GM/NIGMS NIH HHS/ -- ZR01GM06886-06A1/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Nov 25;468(7323):527-32. doi: 10.1038/nature09606.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, Carnegie Institution for Science, 260 Panama St, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21107422" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arabidopsis/genetics/*metabolism/microbiology ; Arabidopsis Proteins/genetics/*metabolism ; Biological Transport/genetics ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Glucose/*metabolism ; HEK293 Cells ; Host-Pathogen Interactions/*physiology ; Humans ; Membrane Transport Proteins/*metabolism ; Models, Biological ; Oryza/genetics/metabolism/microbiology ; RNA, Messenger/metabolism ; Saccharomyces cerevisiae/genetics ; Xenopus/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1992-04-24
    Description: Polyhydroxybutyrate (PHB), a high molecular weight polyester, is accumulated as a storage carbon in many species of bacteria and is a biodegradable thermoplastic. To produce PHB by genetic engineering in plants, genes from the bacterium Alcaligenes eutrophus that encoded the two enzymes required to convert acetoacetyl-coenzyme A to PHB were placed under transcriptional control of the cauliflower mosaic virus 35S promoter and introduced into Arabidopsis thaliana. Transgenic plant lines that contained both genes accumulated PHB as electron-lucent granules in the cytoplasm, nucleus, and vacuole; the size and appearance of these granules were similar to the PHB granules that accumulate in bacteria.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Poirier, Y -- Dennis, D E -- Klomparens, K -- Somerville, C -- New York, N.Y. -- Science. 1992 Apr 24;256(5056):520-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17787950" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-04-05
    Description: The mechanisms that regulate plant lipid metabolism determine the dietary and industrial value of storage oils found in economically important species and may control the ability of many plants to survive exposure to temperature extremes. Many of the problems researchers have in defining the pathways, enzymes, and genes involved in plant lipid metabolism appear to be amenable to analysis by genetic approaches. Mutants with alterations in membrane lipid composition have also been used to study the structural and adaptive roles of lipids. The application of genetic engineering methods affords opportunities for researchers to apply knowledge gained about plant lipid metabolism toward enhanced use of plant oils as abundant and renewable sources of reduced carbon.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Somerville, C -- Browse, J -- New York, N.Y. -- Science. 1991 Apr 5;252(5002):80-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17739077" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...