ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2020-07-31
    Description: Photovoltaic (PV) systems are the most promising technology for residential installation as an alternative source of energy. To interface the primary source of PV to the electrical grid, an LCL-filtered inverter is being broadly adopted due to its low volume compared to the L-filtered one and the superior ability to filter high-frequency harmonics. In this context, this paper proposes highly accurate digital current controllers for single-phase LCL-filtered grid-connected inverters. The proposed controllers are: Integral-single-lead, integral double-lead, integral double-lead taking into account the effect of pulse width modulation (PWM) delay and the proportional-resonant (PR). These controllers are different from the traditional Proportional-Integral (PI), Proportional-Derivative (PD), and Proportional-Integral-Derivative (PID). One of the novelties of this paper is the detailed, step-by-step procedure for tuning each parameter of the proposed digital controllers considering the dynamic behavior of the LCL filter. The proposed PR has a different and more straightforward tuning methodology than those procedures commonly found in the literature. Therefore, this paper is an attractive tool for a fast, accurate, and reliable way to tune digital current controllers for a single-phase LCL-filtered grid-connected inverter. The controllers were verified in the digital signal controller (DSC) TMS320F28335 while the power structure runs in a hardware-in-loop (HIL device). Results show the efficacy of the proposed controllers.
    Electronic ISSN: 2673-4826
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-22
    Description: The novelty behind the research in this paper is to investigate the Super Twisting Sliding Mode Controller (ST-SMC) for efficiently injecting both active and reactive power under normal and abnormal operating conditions for a three-phase grid-connected photovoltaic (PV) system. The ST-SMC is aimed to inject sinusoidal current to the grid with low Total Harmonic Distortion (THD), to avoid chattering with easy real implementation, and to enhance the quality of disturbance rejection and sensitivity to parameter variation. The test under normal conditions includes initialization, steady state behavior, dynamic behavior, and interrupting the injection of acting and reactive power while the abnormal conditions consists of voltage sag, voltage swell, frequency variation, DC-link variation, and inclusion of 5th harmonics, etc. The phase lock loop used for synchronization is based on a synchronous reference frame that works well under distorted grids and nonideal. Automatic code is generated in PSIM 9.1 for hardware implementation in the DSP board TMS32F28335 from Texas Instruments while code composer studio 6.2.0 is used for debugging. The real time testing is executed using Typhoon Hardware in Loop (HIL) 402 device on the DSP board. The results authenticate the fastness, effectiveness, and robustness for both steady state and dynamic behavior under various scenarios of the designed controller.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-05-09
    Description: Conventional Energy Resources (CER) are being rapidly replaced by Renewable Energy Resources (RER) due to their abundant, environmentally friendly, clean, and inexhaustible nature. In recent years, Solar Photovoltaic (SPV) energy installation is booming at a rapid rate among various RER. Grid-Connected PVS required advance DC-link controllers to overcome second harmonic ripple and current controllers to feed-in high-quality current to the grid. This paper successfully presents the design of a Fuzzy-Logic Based PI (F-PI) and Fuzzy-Logic based Sliding Mode Controller (F-SMC) for the DC-link voltage controller and Proportional Resonant (PR) with Resonant Harmonic Compensator (RHC) as a current controller for a Single-Phase Two-Stages Grid-connected Transformerless (STGT) Photovoltaic (PV) Inverter. The current controller is designed with and without a feedforward PV power loop to improve dynamics and control. A Second Order General Integral (SOGI)-based Phase Lock Loop (PLL) is also designed that has a fast-dynamic response, fast-tracking accuracy, and harmonic immunity. A 3 kW STGT-PV system is used for simulation in Matlab/Simulink. A comparative assessment of designed controllers is carried out with a conventionally well-tuned PI controller. The designed controllers improve the steady-state and dynamic performance of the grid-connected PV system. In addition, the results, performance measure analysis, and harmonics contents authenticate the robustness, fastness, and effectiveness of the designed controllers, related to former works.
    Electronic ISSN: 2079-9292
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-12-19
    Description: This paper presents the design and analysis of a proportional resonant controller with a resonant harmonic compensator and switch-type fault current limiter, as a fault-ride through strategy for a three-phase, grid-connected photovoltaic (PV) system under normal conditions and asymmetrical faults. The switch-type fault limiter comprised of current-limiting inductors, a bridge rectifier, a snubber capacitor, linear transformers, and energy absorption bypass. Furthermore, a critical and analytical comparison of switch-type fault limiters is carried out, with the conventional crowbar as the fault-ride through strategy, in combination with a conventionally tuned proportional integrator controller. The designed fault-ride through strategies with proportional integrator and proportional resonant controllers with resonant harmonic compensators are tested at the point of common coupling of the photovoltaic system and at a distance of 19 km from the point of common coupling, in order to analyze the impacts of fault parameter with respect to location. A MATLAB/Simulink model of a 100 kW three-phase grid-connected photovoltaic system is used for analysis. The simulation results of the proposed switch-type fault limiter with proportional resonant controller effectively validate the stable, ripple-free, and robust response compared to all other configurations. In addition, it is also verified that the grid faults on the PV system have a significant impact on fault type, and less impact on fault location.
    Electronic ISSN: 2079-9292
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-07-28
    Description: The research significance of various scientific aspects of photovoltaic (PV) systems has increased over the past decade. Grid-tied inverters the vital elements for the effective interface of Renewable Energy Resources (RER) and utility in the distributed generation system. Currently, Single-Phase Transformerless Grid-Connected Photovoltaic (SPTG-CPV) inverters (1–10 kW) are undergoing further developments, with new designs, and interest of the solar market. In comparison to the transformer (TR) Galvanic Isolation (GI)-based inverters, its advantageous features are lower cost, lighter weight, smaller volume, higher efficiency, and less complexity. In this paper, a review of SPTG-CPV inverters has been carried out. The basic operational principles of all SPTG-CPV inverters are presented in details for positive, negative, and zero cycles. A comprehensive analysis of each topology has been deliberated. A comparative assessment is also performed based on weaknesses, strengths, component ratings, efficiency, total harmonic distortion (THD), semiconductor device losses, and leakage current of various SPTG-CPV inverters schemes. Typical PV inverter structures and control schemes for grid connected three-phase system and single-phase systems are also discussed, described, and reviewed. Comparison of various industrial grids-connected PV inverters is also performed. Loss analysis is also performed for various topologies at 1 kW. Selection of appropriate topologies for their particular application is thoroughly presented. Then, discussion and forthcoming progress are emphasized. Lastly, the conclusions are presented. More than 100 research publications on the topic of SPTG-CPV inverter topologies, configurations, and control schematics along with the recent developments are thoroughly reviewed and classified for quick reference.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-09-05
    Description: Recently, the Indirect Field Oriented Control (IFOC) scheme for Induction Motors (IM) has gained wide acceptance in high performance applications. The IFOC has remarkable characteristics of decoupling torque and flux along with an easy hardware implementation. However, the detuning limits the performance of drives due to uncertainties of parameters. Conventionally, the use of a Proportional Integral Differential (PID) controller has been very frequent in variable speed drive applications. However, it does not allow for the operation of an IM in a wide range of speeds. In order to tackle these problems, optimal, robust, and adaptive control algorithms are mostly in use. The work presented in this paper is based on new optimal, robust, and adaptive control strategies, including an Adaptive Proportional Integral (PI) controller, sliding mode control, Fuzzy Logic (FL) control based on Steepest Descent (SD), Levenberg-Marquardt (LM) algorithms, and Hybrid Control (HC) or adaptive sliding mode controller to overcome the deficiency of conventional control strategies. The main theme is to design a robust control scheme having faster dynamic response, reliable operation for parameter uncertainties and speed variation, and maximized torque and efficiency of the IM. The test bench of the IM control has three main parts: IM model, Inverter Model, and control structure. The IM is modelled in synchronous frame using d q modelling while the Space Vector Pulse Width Modulation (SVPWM) technique is used for modulation of the inverter. Our proposed controllers are critically analyzed and compared with the PI controller considering different conditions: parameter uncertainties, speed variation, load disturbances, and under electrical faults. In addition, the results validate the effectiveness of the designed controllers and are then related to former works.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...