ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-04-01
    Print ISSN: 0021-9991
    Electronic ISSN: 1090-2716
    Topics: Computer Science , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-02-01
    Print ISSN: 0021-9991
    Electronic ISSN: 1090-2716
    Topics: Computer Science , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: There are many flows fields that span a wide range of length scales where regions of both rarefied and continuum flow exist and neither direct simulation Monte Carlo (DSMC) nor computational fluid dynamics (CFD) provide the appropriate solution everywhere. Recently, a new viscous collision limited (VCL) DSMC technique was proposed to incorporate effects of physical diffusion into collision limiter calculations to make the low Knudsen number regime normally limited to CFD more tractable for an all-particle technique. This original work had been derived for a single species gas. The current work extends the VCL-DSMC technique to gases with multiple species. Similar derivations were performed to equate numerical and physical transport coefficients. However, a more rigorous treatment of determining the mixture viscosity is applied. In the original work, consideration was given to internal energy non-equilibrium, and this is also extended in the current work to chemical non-equilibrium.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-23668 , International Symposium on Rarified Gas Dynamics; Jul 10, 2016 - Jul 14, 2016; Victoria; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The background gas in a vacuum facility for electric propulsion ground testing is examined in detail through a series of cold flow simulations using a direct simulation Monte Carlo (DSMC) code. The focus here is on the background gas itself, its structure and characteristics, rather than assessing its interaction and impact on thruster operation. The background gas, which is often incorrectly characterized as uniform, is found to have a notable velocity within a test facility. The gas velocity has an impact on the proper measurement of pressure and the calculation of ingestion flux to a thruster. There are also considerations for best practices for tests that involve the introduction of supplemental gas flows to artificially increase the background pressure. All of these effects need to be accounted for to properly characterize the operation of electric propulsion thrusters across different ground test vacuum facilities.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN24381 , Propulsion and Energy Forum 2015; Jul 27, 2015 - Jul 29, 2015; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Electric aircraft pose a unique design challenge in that they lack a simple way to reject waste heat from the power train. While conventional aircraft reject most of their excess heat in the exhaust stream, for electric aircraft this is not an option. To examine the implications of this challenge on electric aircraft design and performance, we developed a model of the electric subsystems for the NASA X-57 electric testbed aircraft. We then coupled this model with a model of simple 2D aircraft dynamics and used a Legendre-Gauss-Lobatto collocation optimal control approach to find optimal trajectories for the aircraft with and without thermal constraints. The results show that the X-57 heat rejection systems are well designed for maximum-range and maximum-efficiency flight, without the need to deviate from an optimal trajectory. Stressing the thermal constraints by reducing the cooling capacity or requiring faster flight has a minimal impact on performance, as the trajectory optimization technique is able to find flight paths which honor the thermal constraints with relatively minor deviations from the nominal optimal trajectory.
    Keywords: Aircraft Design, Testing and Performance; Aircraft Propulsion and Power; Numerical Analysis
    Type: GRC-E-DAA-TN42131 , AIAA Aviation and Aeronautics Forum and Exposition; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: In support of wear testing for the Hall Effect Rocket with Magnetic Shielding (HERMeS) program, the back sputter from a Hall effect thruster plume has been modeled for the NASA Glenn Research Centers Vacuum Facility 5. The predicted wear at a near-worst case condition of 600 V, 12.5 kW was found to be on the order of 3 4 mkhour in a fully carbon-lined chamber. A more detailed numerical monte carlo code was also modified to estimate back sputter for a detailed facility and pumping configuration. This code demonstrated similar back sputter rate distributions, but is not yet accurately modeling the magnitudes. The modeling has been benchmarked to recent HERMeS wear testing, using multiple microbalance measurements. These recent measurements have yielded values, on the order of 1.5- 2 microns/khour.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN34101 , AIAA/SAE/ASEE Joint Propulsion Conference; Jul 25, 2016 - Jul 27, 2016; Salt Lake City, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Lifetime requirements for electric propulsion devices, including Hall Effect thrusters, are continually increasing, driven in part by NASA's inclusion of this technology in it's exploration architecture. NASA will demonstrate high-power electric propulsion system on the Solar Electric Propulsion Technology Demonstration Mission (SEP TDM). The Asteroid Redirect Robotic mission is one candidate SEP TDM, which is projected to require tens of thousands of thruster life. As thruster life is increased, for example through the use of improved magnetic field designs, the relative influence of facility effects increases. One such effect is the sputtering and redeposition, or back sputter, of facility materials by the high energy thruster plumes. In support of wear testing for the Hall Effect Rocket with Magnetic Shielding (HERMeS) project, the back sputter from a Hall effect thruster plume has been modeled for the NASA Glenn Research Center's Vacuum Facility 5. The predicted wear at a near-worst case condition of 600 V, 12.5 kW was found to be on the order of 1 micron/kh in a fully carbon-lined chamber. A more detailed numerical Monte Carlo code was also modified to estimate back sputter for a detailed facility and pumping configuration. This code demonstrated similar back sputter rate distributions, but is not yet accurately modeling the magnitudes. The modeling has been benchmarked to recent HERMeS wear testing, using multiple microbalance measurements. These recent measurements have yielded values on the order of 1.5 - 2 micron/kh at 600 V and 12.5 kW.
    Keywords: Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN33437 , AIAA/SAE/ASEE Joint Propulsion Conference; Jul 25, 2016 - Jul 27, 2016; Salt Lake City, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: A tendency for excessive exhaust jet mixing noise from low bypass ratio turbofan engines is recognized as a key challenge in the design of commercial supersonic aircraft. In this work we investigate a unique combination of two noise mitigation methods as a novel strategy to reduce jet mixing noise. First, a thermal acoustic shield (TAS) is used to reflect high frequency acoustic waves at small angles to the jet axis; second, a mixer-ejector (ME) nozzle is used to mechanically shield noise propagating at large angles to the axis. The ME shroud also provides a convenient location for a TAS nozzle and improves TAS effectiveness by limiting the downstream extent of high frequency noise generation. In an additional benefit for a velocity-matched TAS stream, the ME allows a reduction in strength of the TAS outer shear layer which could serve as a secondary noise source. The present work provides a quantitative assessment of the ME-TAS concept, using a combination of RANS CFD simulations, acoustic analogy calculations for the farfield Green's function, and surrogate-based modeling and parameter space exploration. We first evaluate a subscale configuration, then use scaling arguments to apply subscale results to the systems-level analysis of a flight configuration; the latter configuration includes a generic low bypass ratio turbofan engine with an engine-driven electric generator for supplementary heating of the TAS stream. Additional RANS CFD calculations are performed for a notional ME-TAS geometry based on the full scale configuration, and various modeling assumptions and operational characteristics are evaluated. The ME-TAS concept is shown to provide effective shielding for high frequency jet noise, and should enable comparable noise suppression to a stand-alone ME of considerably greater length, weight and drag. In addition to investigating the integrated ME-TAS system, the present work differs from previous research into TAS and related fluidic shield concepts through the inclusion of modern numerical analysis tools and the systematic numerical examination of various design parameters.
    Keywords: Aircraft Design, Testing and Performance; Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN63539 , 2019 American Institute of Aeronautics and Astronautics (AIAA) SciTech Forum; Jan 07, 2019 - Jan 11, 2019; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...