ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2015-08-01
    Description: Chapter 16 of ASCE 7 governs the selection of ground motions for analysis of new buildings and requires recordings that meet specified criteria. If a sufficient number of recordings cannot be found, it allows the use of “appropriate simulated ground motions,” but does not provide further guidance. This paper outlines a procedure for generating and selecting a set of “appropriate” hybrid broadband simulations and a comparable set of recordings. Both ground motion sets are used to analyze a building in Berkeley, California, and the predicted structural performance is compared. The structural behavior resulting from recordings and simulations is similar, and most discrepancies are explained by differences in directional properties such as orientation of the maximum spectral response. These results suggest that when simulations meet the criteria outlined for recordings in ASCE 7 and properties such as directionality are realistically represented, simulations provide useful results for structural analysis and design.
    Print ISSN: 8755-2930
    Electronic ISSN: 1944-8201
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-05-19
    Description: This paper examines four methods by which ground motions can be selected for dynamic seismic response analyses of engineered systems when the underlying seismic hazard is quantified via ground motion simulation rather than empirical ground motion prediction equations. Even with simulation-based seismic hazard, a ground motion selection process is still required in order to extract a small number of time series from the much larger set developed as part of the hazard calculation. Four specific methods are presented for ground motion selection from simulation-based seismic hazard analyses, and pros and cons of each are discussed via a simple and reproducible illustrative example. One of the four methods (method 1 'direct analysis') provides a 'benchmark' result (i.e., using all simulated ground motions), enabling the consistency of the other three more efficient selection methods to be addressed. Method 2 ('stratified sampling') is a relatively simple way to achieve a significant reduction in the number of ground motions required through selecting subsets of ground motions binned based on an intensity measure, IM. Method 3 ('simple multiple stripes') has the benefit of being consistent with conventional seismic assessment practice using as-recorded ground motions, but both methods 2 and 3 are strongly dependent on the efficiency of the conditioning IM to predict the seismic responses of interest. Method 4 ('generalized conditional intensity measure-based selection') is consistent with 'advanced' selection methods used for as-recorded ground motions and selects subsets of ground motions based on multiple IMs, thus overcoming this limitation in methods 2 and 3. © 2015 John Wiley & Sons, Ltd.
    Print ISSN: 0098-8847
    Electronic ISSN: 1096-9845
    Topics: Architecture, Civil Engineering, Surveying
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-11-23
    Description: This paper investigates circumstances behind the occurrence of negative ε (the normalized difference between the spectral acceleration of a recorded ground motion and the median response predicted by a ground motion prediction equation) in probabilistic seismic hazard deaggregation. Negative ε values are of engineering interest because of their impact on the conditional mean spectrum (CMS), which is a proposed alternative to the uniform hazard spectrum (UHS) as a target spectrum for ground motion selection. In the case where target ε values from deaggregation are positive, the CMS calculation produces relatively lower response spectra than the UHS. Positive target ε values occur almost universally in active seismic regions at long return periods of engineering interest, but the possibility of negative target ε values is important because in the case of negative target ε, some relationships between the CMS and UHS would reverse. This paper describes the calculation of target ε, performs parametric studies to determine when negative ε values occur in deaggregation, and investigates the potential impact on target spectrum calculation and ground motion selection. The case studies indicate that special seismicity models and certain ground motion prediction equations have the most significant effect on ε values and a combination of these characteristics in Eastern North America creates the most likely situation for negative target ε to occur. CMS results are nonintuitive when the target ε is negative, but it is not clear that this is a common practical concern because negative target ε occurs only in well-constrained areas. © 2011 John Wiley & Sons, Ltd.
    Print ISSN: 0098-8847
    Electronic ISSN: 1096-9845
    Topics: Architecture, Civil Engineering, Surveying
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-01-01
    Print ISSN: 0267-7261
    Electronic ISSN: 1879-341X
    Topics: Architecture, Civil Engineering, Surveying , Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...