ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: This report summarizes the Phase I research and development work performed during the March 13, 2015 to July 13, 2016 period. The proposal for this work was submitted in response to NASA Research Announcement NNH14ZOA001N, "Space Technology Research, Development, Demonstration, and Infusion 2014 (SpaceTech-REDDI-2014)," Appendix 14GCD-C2 "Game Changing Development Program, Advanced Oxygen Recovery for Spacecraft Life Support Systems Appendix" The Task Agreement for this Phase I work is Document Control Number: GCDP-02-TA-15015. The objective of the Phase I project was to demonstrate in laboratories two Engineering Development Units (EDU) that perform critical functions of the low temperature carbon dioxide electrolysis and the catalytic conversion of carbon monoxide into carbon and carbon dioxide. The low temperature carbon dioxide electrolysis EDU was built by the University of Delaware with Dr. Feng Jiao as the principal investigator in charge of this EDU development (under NASA Contract NNC15CA04C). The carbon monoxide catalytic conversion EDU was built by the NASA Glenn Research Center with Kenneth Burke as the principal investigator and overall project leader for the development of both EDUs. Both EDUs were successfully developed and demonstrated the critical functions for each process. The carbon dioxide electrolysis EDU was delivered to the NASA Johnson Space Center and the carbon monoxide catalytic conversion EDU was delivered to the NASA Marshall Spaceflight Center.
    Keywords: Man/System Technology and Life Support
    Type: NASA/TM-2016-219436 , E-19324 , GRC-E-DAA-TN36443
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-18
    Description: A Unitized Regenerative Fuel Cell (URFC) Energy Storage System is being developed at the NASA Glenn Research Center. This URFC system is unique in that it uses regenerative gas dryers/humidifiers that are mounted on the surface of the gas storage tanks that act as the radiators for thermal control of the URFC system. As the gas storage tanks cool down during URFC charging the regenerative gas dryers/humidifiers dry the hydrogen and oxygen gases produced by electrolysis. As the gas storage tanks heat up during URFC discharging, the regenerative gas dryers/humidifiers humidify the hydrogen and oxygen gases used by fuel cell. An analytical model was developed to simulate the URFC system's regenerative gas dryers/humidifiers. The model is in the form of an EXCEL@ worksheet that allows the investigation of the regenerative gas dryers/humidifier performance as a function of time and position within the regenerative gas dryers/humidifiers, as well as other key system variables. Finite Element Analysis (FEA) modeling of the regenerative gas dryers/humidifier and gas storage tank wall was also done to analyze spatial temperature distribution within the regenerative gas dryers/humidifiers and the localized tank wall. Test results obtained from the testing of the regenerative gas dryers/humidifiers in a thermal vacuum environment were used to corroborate the analyses.
    Keywords: Energy Production and Conversion
    Type: 2nd International Energy Conversion Engineering Conference; Aug 16, 2004 - Aug 19, 2004; Providence, RI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-18
    Description: The ancillary components for Unitized Regenerative Fuel Cell (URFC) Energy Storage System are being developed at the NASA Glenn Research Center. This URFC system is unique in that it uses the surface area of the hydrogen and oxygen storage tanks as radiating heat surfaces for overall thermal control of the system. The waste heat generated by the URFC stack during charging and discharging is transferred from the cell stack to the surface of each tank by loop heat pipes. The heat pipes are coiled around each tank and covered with a thin layer of thermally conductive layer of carbon composite. The thin layer of carbon composite acts as a fin structure that spreads the heat away from the heat pipe and across the entire tank surface. Two different sized commercial grade composite tanks were constructed with integral heat pipes and tested in a thermal vacuum chamber to examine the feasibility of using the storage tanks as system radiators. The storage radiators were subjected to different steady-state heat loads and varying heat load profiles. The surface emissivity and specific heat capacity of each tank were calculated. The results were incorporated into a model that simulates the performance of similar radiators using lightweight, space rated carbon composite tanks.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: SAE Power Systems Conference; Nov 02, 2004 - Nov 04, 2004; Reno, NV; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-18
    Description: A Unitized Regenerative Fuel Cell (URFC) Energy Storage System is being developed at the NASA Glenn Research Center. This URFC system is unique in that it uses the surface area of the hydrogen and oxygen storage tanks as radiating heat surfaces for overall thermal control of the system. The tank surfaces also play an important role in the temperature control of regenerative gas dryers/humidifiers used to dry the hydrogen and oxygen gases produced by electrolysis during the charging and also used to humidify the hydrogen and oxygen gases used by fuel cell during the discharging of the URFCS. A bi- directional pressure controller is used to control the pressure of the oxygen and hydrogen gas inside the URFC stack during both charging and discharging of the URFC system. A water storage accumulator is used to store water reactant and control water pressure inside the URFC stack.
    Keywords: Propellants and Fuels
    Type: Fuel Cell Seminar; Nov 01, 2004 - Nov 05, 2004; San Antonio, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates and integrated heat exchanger technology to collect the heat from the cooling plates (Ref. 1). The next step in the development of this passive thermal approach was the demonstration of the control of the heat removal process and the demonstration of the passive thermal control technology in actual fuel cell stacks. Tests were run with a simulated fuel cell stack passive thermal management system outfitted with passive cooling plates, an integrated heat exchanger and two types of cooling flow control valves. The tests were run to demonstrate the controllability of the passive thermal control approach. Finally, successful demonstrations of passive thermal control technology were conducted with fuel cell stacks from two fuel cell stack vendors.
    Keywords: Energy Production and Conversion
    Type: NASA/TM-2012-217421 , E-18093
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: To provide uniform cooling for a fuel cell stack, a cooling plate concept was evaluated. This concept utilized thin cooling plates to extract heat from the interior of a fuel cell stack and move this heat to a cooling manifold where it can be transferred to an external cooling fluid. The advantages of this cooling approach include a reduced number of ancillary components and the ability to directly utilize an external cooling fluid loop for cooling the fuel cell stack. A number of different types of cooling plates and manifolds were developed. The cooling plates consisted of two main types; a plate based on thermopyrolytic graphite (TPG) and a planar (or flat plate) heat pipe. The plates, along with solid metal control samples, were tested for both thermal and electrical conductivity. To transfer heat from the cooling plates to the cooling fluid, a number of manifold designs utilizing various materials were devised, constructed, and tested. A key aspect of the manifold was that it had to be electrically nonconductive so it would not short out the fuel cell stack during operation. Different manifold and cooling plate configurations were tested in a vacuum chamber to minimize convective heat losses. Cooling plates were placed in the grooves within the manifolds and heated with surface-mounted electric pad heaters. The plate temperature and its thermal distribution were recorded for all tested combinations of manifold cooling flow rates and heater power loads. This testing simulated the performance of the cooling plates and manifold within an operational fuel cell stack. Different types of control valves and control schemes were tested and evaluated based on their ability to maintain a constant temperature of the cooling plates. The control valves regulated the cooling fluid flow through the manifold, thereby controlling the heat flow to the cooling fluid. Through this work, a cooling plate and manifold system was developed that could maintain the cooling plates within a minimal temperature band with negligible thermal gradients over power profiles that would be experienced within an operating fuel cell stack.
    Keywords: Energy Production and Conversion; Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2014-218395 , E-18968 , GRC-E-DAA-TN9756
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: A simplified, lightweight system for dissipating heat of a regenerative fuel- cell system would include a heat pipe with its evaporator end placed at the heat source and its condenser end integrated into the wall of the regenerative fuel cell system gas-storage tanks. The tank walls act as heat-radiating surfaces for cooling the regenerative fuel cell system. The system was conceived for use in outer space, where radiation is the only physical mechanism available for transferring heat to the environment. The system could also be adapted for use on propellant tanks or other large-surface-area structures to convert them to space heat-radiating structures. Typically for a regenerative fuel cell system, the radiator is separate from the gas-storage tanks. By using each tank s surface as a heat-radiating surface, the need for a separate, potentially massive radiator structure is eliminated. In addition to the mass savings, overall volume is reduced because a more compact packaging scheme is possible. The underlying tank wall structure provides ample support for heat pipes that help to distribute the heat over the entire tank surface. The heat pipes are attached to the outer surface of each gas-storage tank by use of a high-thermal conductance, carbon-fiber composite-material wrap. Through proper choice of the composite layup, it is possible to exploit the high longitudinal conductivity of the carbon fibers (greater than the thermal conductivity of copper) to minimize the unevenness of the temperature distribution over the tank surface, thereby helping to maximize the overall heat-transfer efficiency. In a prototype of the system, the heat pipe and the composite wrap contribute an average mass of 340 g/sq m of radiator area. Lightweight space radiator panels have a mass of about 3,000 g/sq m of radiator area, so this technique saves almost 90 percent of the mass of separate radiator panels. In tests, the modified surface of the tank was found to have an emissivity of 0.85. The composite wrap remained tightly bound to the surface of the tank throughout the testing in thermal vacuum conditions.
    Keywords: Technology Utilization and Surface Transportation
    Type: LEW-17666-1 , NASA Tech Briefs, January 2007; 29
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: An analysis was performed to evaluate the concept of utilizing conductive cooling plates to remove heat from a fuel cell stack, as opposed to a conventional internal cooling loop. The potential advantages of this type of cooling system are reduced stack complexity and weight and increased reliability through the reduction of the number of internal fluid seals. The conductive cooling plates would extract heat from the stack transferring it to an external coolant loop. The analysis was performed to determine the required thickness of these plates. The analysis was based on an energy balance between the thermal energy produced within the stack and the heat removal from the cooling plates. To accomplish the energy balance, the heat flow into and along the plates to the cooling fluid was modeled. Results were generated for various numbers of cells being cooled by a single cooling plate. The results provided cooling plate thickness, mass, and operating temperature of the plates. It was determined that utilizing high-conductivity pyrolitic graphite cooling plates can provide a specific cooling capacity (W/kg) equivalent to or potentially greater than a conventional internal cooling loop system.
    Keywords: Propellants and Fuels
    Type: NASA/TM--2008-215149 , E-16392
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-28
    Description: The system that operates in a zero gravity environment and has an integral ozone generating capability is disclosed. The system contributes to the control of metabolic water vapors in the air, and also provided disinfection of any resulting condensate within the system, as well as disinfection of the air stream that flows throughout the disclosed system.
    Keywords: Mechanical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-28
    Description: A Unitized Regenerative Fuel Cell system uses heat pipes to convey waste heat from the fuel cell stack to the reactant storage tanks. The storage tanks act as heat sinks/sources and as passive radiators of the waste heat from the fuel cell stack. During charge up, i.e., the electrolytic process, gases are conveyed to the reactant storage tanks by way of tubes that include dryers. Reactant gases moving through the dryers give up energy to the cold tanks, causing water vapor in with the gases to condense and freeze on the internal surfaces of the dryer. During operation in its fuel cell mode, the heat pipes convey waste heat from the fuel cell stack to the respective reactant storage tanks, thereby heating them such that the reactant gases, as they pass though the respective dryers on their way to the fuel cell stacks retrieve the water previously removed.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...