ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: NASA's new Ares Launch Vehicle will require twelve thrusters to provide roll control of the vehicle during the first stage firing. All twelve roll control thrusters will be located at the inter-stage segment that separates the solid rocket booster first stage from the second stage. NASA selected a mono propellant hydrazine solution and as a result awarded Aerojet-General a contract in 2007 for an advanced development program for an MR-80- series 625 Ibf vacuum thrust monopropellant hydrazine thruster. This thruster has heritage dating back to the 1976 Viking Landers and most recently for the 2011 Mars Science Laboratory. Prior to the Ares application, the MR-80-series thrusters had been equipped with throttle valves and not typically operated in pulse mode. The primary objective of the advanced development program was to increase the technology readiness level and retire major technical risks for the future flight qualification test program. Aerojet built on their heritage MR-80 rocket engine designs to achieve the design and performance requirements. Significant improvements to cost and lead-time were achieved by applying Design for Manufacturing and Assembly (DFMA) principles. AerojetGeneral has completed Preliminary and Critical Design Reviews, followed by two successful rocket engine development test programs. The test programs included qualification random vibration and firing lite that significantly exceed the flight qualification requirements. This paper discusses the advanced development program and the demonstrated capability of the MR-80C engine. Y;
    Keywords: Spacecraft Propulsion and Power
    Type: M10-0087 , 46th AIAA Joint Propulsion Conference; Jul 25, 2010 - Jul 28, 2010; Nashville, TN; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Additive Manufacturing (AM) of metals is a processing technology that has significantly matured over the last decade. For liquid propellant rocket engines, the advantages of AM for replacing conventional manufacturing of complicated and expensive metallic components and assemblies are very attractive. AM can significantly reduce hardware cost, shorten fabrication schedules, increase reliability by reducing the number of joints, and improve hardware performance by allowing fabrication of designs not feasible by conventional means. The NASA Marshall Space Flight Center (MSFC) has been involved with various forms of metallic additive manufacturing for use in liquid rocket engine component design, development, and testing since 2010. The AM technique most often used at the NASA MSFC has been powder-bed fusion or selective laser melting (SLM), although other techniques including laser directed energy deposition (DED), arc-based deposition, and laser-wire cladding techniques have also been used to develop several components. The purpose of this paper is to discuss the various internal programs at the NASA MSFC using AM to develop combustion devices hardware. To date at the NASA MSFC, combustion devices component hardware ranging in size from 100 lbf to 35,000 lbf have been designed and manufactured using SLM and deposition-based AM processes, and many of these pieces have been hot-fire tested. Combustion devices component hardware have included thrust chamber injectors, injector components such as faceplates, regeneratively-cooled combustion chambers, regeneratively-cooled nozzles, gas generator and preburner hardware, and augmented spark igniters. Ongoing and future developments for combustion devices have also included design of components sized for boost-class engines. Several design and hot-fire test iterations have been completed on these subscale and larger scale components, and a summary of these results will be presented as well.
    Keywords: Mechanical Engineering; Spacecraft Propulsion and Power
    Type: M18-6805 , AIAA/SAE/ASEE Joint Propulsion Conference 2018; Jul 07, 2018 - Jul 13, 2018; Cincinnatti, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-13
    Description: This paper addresses the progress of technology development of a laser ignition system at NASA Marshall Spac Flight Center (MSFC). Initial hot-fire tests in a small-scale rocket chamber at MSFC have demonstrated the dual pulse laser-induced spark (DPLIS) technique, which has an advantage over existing single-pulse laser ignition techniques in that it can be optimized in its laser pulse format to maximize the initial plasma volume, the plasm: lifetime, as well as the flame kernel growth rate. The distribution of the total laser energy into two separate pulse also lowers the peak power that would need to be sent through fiber optics to the combustion chamber, making the implementation of this technique more practical than other single-pulse techniques. A first generation prototype of an optic fiber-coupled laser ignition system will be tested a rocket chamber with RP-1/GOX and GH2/GOX propellants systems. Other relevant technology, such as optical windows, flight-qualified laser system etc. will be discussed in this paper.
    Keywords: Spacecraft Propulsion and Power
    Type: JANNAF CS/APS/PSHS/MSS Meeting; Dec 03, 2003; Colorado Springs, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-13
    Description: In the past decade, NASA has formulated science mission concepts with an anticipation of landing spacecraft on the lunar surface, meteoroids, and other planets. Advancing thruster technology for spacecraft propulsion systems has been considered for maximizing science payload. Starting in 2010, development of In-Space Engine (designated as ISE-100) has been carried out. ISE-100 thruster is designed based on heritage Missile Defense Agency (MDA) technology aimed for a lightweight and efficient system in terms volume and packaging. It runs with a hypergolic bi-propellant system: MON-25 (nitrogen tetroxide, N2O4, with 25% of nitric oxide, NO) and MMH (monomethylhydrazine, CH6N2) for NASA spacecraft applications. The utilization of this propellant system will provide a propulsion system capable of operating at wide range of temperatures, from 50 C (122 F) down to -30 C (-22 F) to drastically reduce heater power. The thruster is designed to deliver 100 lb(sub f) of thrust with the capability of a pulse mode operation for a wide range of mission duty cycles (MDCs). Two thrusters were fabricated. As part of the engine development, this test campaign is dedicated for the design verification of the thruster. This presentation will report the efforts of the design verification hot-fire test program of the ISE-100 thruster in collaboration between NASA Marshall Space Flight Center (MSFC) and Aerojet Rocketdyne (AR) test teams. The hot-fire tests were conducted at Advance Mobile Propulsion Test (AMPT) facility in Durango, Colorado, from May 13 to June 10, 2016. This presentation will also provide a summary of key points from the test results.
    Keywords: Propellants and Fuels; Spacecraft Propulsion and Power
    Type: M17-5835 , In-Space Chemical Propulsion Technical Interchange Meeting; Apr 06, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-13
    Description: To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for liquid rocket engine applications. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concepts not only offer the system simplicity, but they also would enhance the combustion performance. The test results showed that the chamber performance was markedly high even at a low chamber length-to-diameter ratio (L/D). This incentive can be translated to a convenience in the thrust chamber packaging. Variations of the vortex chamber concepts have been introduced in the past few decades. These investigations include an ongoing work at Orbital Technologies Corporation (ORBITEC). By injecting the oxidizer tangentially at the chamber convergence and fuel axially at the chamber head end, Knuth et al. were able to keep the wall relatively cold. A recent investigation of the low L/D vortex chamber concept for gel propellants was conducted by Michaels. He used both triplet (two oxidizer and one fuel orifices) and unlike impinging schemes to inject propellants tangentially along the chamber wall. Michaels called the subject injection scheme as Impinging Stream Vortex Chamber (ISVC). His preliminary tests showed that high performance, with an Isp efficiency of 92%, can be obtained. MSFC and the U.S. Army are jointly investigating an application of the ISVC concept for the cryogenic oxygen/hydrocarbon propellant system. This vortex chamber concept is currently tested with gel propellants at AMCOM at Redstone Arsenal, Alabama. A version of this concept for the liquid oxygen (LOX)/hydrocarbon fuel (RPM) system has been derived from the one for the gel propellant.
    Keywords: Spacecraft Propulsion and Power
    Type: JANNAF CS/APS/PSHS/MSS Joint Meeting; Apr 08, 2002 - Apr 12, 2002; Destin, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: NASA Marshall Space Flight Center (MSFC) and the U. S. Army are jointly investigating vortex chamber concepts for cryogenic oxygen/hydrocarbon fuel rocket engine applications. One concept, the Impinging Stream Vortex Chamber Concept (ISVC), has been tested with gel propellants at AMCOM at Redstone Arsenal, Alabama. A version of this concept for the liquid oxygen (LOX)/hydrocarbon fuel (RP-1) propellant system is derived from the one for the gel propellant. An unlike impinging injector is employed to deliver the propellants to the chamber. MSFC has also designed two alternative injection schemes, called the chasing injectors, associated with this vortex chamber concept. In these injection techniques, both propellant jets and their impingement point are in the same chamber cross-sectional plane. One injector has a similar orifice size with the original unlike impinging injector. The second chasing injector has small injection orifices. The team has achieved their objectives of demonstrating the self-cooled chamber wall benefits of ISVC and of providing the test data for validating computational fluids dynamics (CFD) models. These models, in turn, will be used to design the optimum vortex chambers in the future.
    Keywords: Spacecraft Propulsion and Power
    Type: AIAA Paper 2003-4476 , 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit; Jul 20, 2003 - Jul 23, 2003; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for liquid rocket engine applications. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concepts not only offer system simplicity, but also enhance the combustion performance. Test results have shown that chamber performance is markedly high even at a low chamber length-to-diameter ratio (LD). This incentive can be translated to a convenience in the thrust chamber packaging. Variations of the vortex chamber concepts have been introduced in the past few decades. These investigations include an ongoing work at Orbital Technologies Corporation (ORBITEC). By injecting the oxidizer tangentially at the chamber convergence and fuel axially at the chamber head end, Knuth et al. were able to keep the wall relatively cold. A recent investigation of the low L/D vortex chamber concept for gel propellants was conducted by Michaels. He used both triplet (two oxidizer orifices and one fuel orifice) and unlike impinging schemes to inject propellants tangentially along the chamber wall. Michaels called the subject injection scheme an Impinging Stream Vortex Chamber (ISVC). His preliminary tests showed that high performance, with an Isp efficiency of 9295, can be obtained. MSFC and the U. S. Army are jointly investigating an application of the ISVC concept for the cryogenic oxygen/hydrocarbon propellant system. This vortex chamber concept is currently tested with gel propellants at AMCOM at Redstone Arsenal, Alabama. A version of this concept for the liquid oxygen (LOX) hydrocarbon fuel (RP-1) system has been derived from the one for the gel propellant. An unlike impinging injector was employed to deliver the propellants to the chamber. MSFC is also conducting an alternative injection scheme, called the chasing injector, associated with this vortex chamber concept. In this injection technique, both propellant jets and their impingement point are in the same chamber cross-sectional plane. Long duration tests (approximately up to 15 seconds) will be conducted on the ISVC to study the thermal effects. This paper will report the progress of the subject efforts at NASA Marshall Space Flight Center. Thrust chamber performance and thermal wall compatibility will be evaluated. The chamber pressures, wall temperatures, and thrust will be measured as appropriate. The test data will be used to validate CFD models, which, in turn, will be used to design the optimum vortex chambers. Measurements in the previous tests showed that the chamber pressures vary significantly with radius. This is due to the existence of the vortices in the chamber flow field. Hence, the combustion efficiency may not be easily determined from chamber pressure. For this project, measured thrust data will be collected. The performance comparison will be in terms of specific impulse efficiencies. In addition to the thrust measurements, several pressure and temperature readings at various locations on the chamber head faceplate and the chamber wall will be made. The first injector and chamber were designed and fabricated based on the available data and experience gained during gel propellant system tests by the U.S. Army. The alternate injector for the ISVC was also fabricated. Hot-fire tests of the vortex chamber are about to start and are expected to complete in February of 2003 at the TS115 facility of MSFC.
    Keywords: Spacecraft Propulsion and Power
    Type: 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 20, 2003 - Jul 23, 2003; Huntsville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: During mainstage testing of the 60,000 lbf thrust Fastrac thrust chamber at MSFC's Test Stand 116 (TS 116), sustained, large amplitude oscillations near 530 Hz were observed in the pressure data. These oscillations were detected both in the RP-1 feedline, downstream of the cavitating venturi, and in the combustion chamber. The driver of the instability is believed to be feedline excitation driven by either periodic cavity collapse at the exit of the cavitating venturi or combustion instability. In covitating venturi, static pressure drops as the flow passes through a constriction resembling a converging-diverging nozzle until the vapor pressure is reached. At the venturi throat, the flow is essentially choked, which is why these devices are typically used for mass flow rate control and disturbance isolation. Typically, a total pressure drop of 15% or more across the venturi is required for cavitation. For much larger pressure differentials, unstable cavities can form and subsequently collapse downstream of the throat. Although the disturbances generated by cavitating venturis is generally considered to be broad-band, this type of phenomena could generate periodic behavior capable of exciting the feedline. An excitation brought about by combustion instability would result from the coupling of a combustion chamber acoustic mode and a feedline resonance frequency. This type of coupling is referred to as "buzz" and is not uncommon for engines in this thrust range.
    Keywords: Spacecraft Propulsion and Power
    Type: PERC Annual Propulsion Symposium; Oct 26, 1998 - Oct 27, 1998; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: To support the mission for the NASA Vision for Space Exploration, the NASA Marshall Space Flight Center conducted a program in 2005 to improve the capability to predict local thermal compatibility and heat transfer in liquid propellant rocket engine combustion devices. The ultimate objective was to predict and hence reduce the local peak heat flux due to injector design, resulting in a significant improvement in overall engine reliability and durability. Such analyses are applicable to combustion devices in booster, upper stage, and in-space engines, as well as for small thrusters with few elements in the injector. In this program, single element and three-element injectors were hot-fire tested with liquid oxygen and ambient temperature gaseous hydrogen propellants at The Pennsylvania State University Cryogenic Combustor Laboratory from May to August 2005. Local heat fluxes were measured in a 1-inch internal diameter heat sink combustion chamber using Medtherm coaxial thermocouples and Gardon heat flux gauges. Injectors were tested with shear coaxial and swirl coaxial elements, including recessed, flush and scarfed oxidizer post configurations, and concentric and non-concentric fuel annuli. This paper includes general descriptions of the experimental hardware, instrumentation, and results of the hot-fire testing for three of the single element injectors - recessed-post shear coaxial with concentric fuel, flush-post swirl coaxial with concentric fuel, and scarfed-post swirl coaxial with concentric fuel. Detailed geometry and test results will be published elsewhere to provide well-defined data sets for injector development and model validatation.
    Keywords: Spacecraft Propulsion and Power
    Type: 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 09, 2006 - Jul 12, 2006; Sacramento, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: To support NASA's Vision for Space Exploration mission, the NASA Marshall Space Flight Center conducted a program in 2005 to improve the capability to predict local thermal compatibility and heat transfer in liquid propellant rocket engine combustion devices. The ultimate objective was to predict and hence reduce the local peak heat flux due to injector design, resulting in a significant improvement in overall engine reliability and durability. Such analyses are applicable to combustion devices in booster, upper stage, and in-space engines with regeneratively cooled chamber walls, as well as in small thrust chambers with few elements in the injector. In this program, single and three-element injectors were hot-fire tested with liquid oxygen and gaseous hydrogen propellants at The Pennsylvania State University Cryogenic Combustor Laboratory from May to August 2005. Local heat fluxes were measured in a 1-inch internal diameter heat sink combustion chamber using Medtherm coaxial thermocouples and Gardon heat flux gauges, Injector configurations were tested with both shear coaxial elements and swirl coaxial elements. Both a straight and a scarfed single element swirl injector were tested. This paper includes general descriptions of the experimental hardware, instrumentation, and results of the hot-fire testing for three coaxial shear and swirl elements. Detailed geometry and test results the for shear coax elements has already been published. Detailed test result for the remaining 6 swirl coax element for the will be published in a future JANNAF presentation to provide well-defined data sets for development and model validation.
    Keywords: Spacecraft Propulsion and Power
    Type: AIAA Paper 2006-5194 , 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 10, 2005 - Jul 13, 2005; Sacramento, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...