ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-904X
    Keywords: cyclosporine ; lipoproteins ; dyslipidemia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. The purpose of this study was to define the relationship between lipoprotein (LP) lipid concentration and composition and the distribution of cyclosporine (CSA) in human plasma. Methods. 3H-CSA LP distribution was determined in normolipidemic human plasma that had been separated into different LP and lipoprotein-deficient plasma (LPDP) fractions by either affinity chromatography coupled with ultracentrifugation, density gradient ultracentrifugation or fast protein liquid chromatography. 3H-CSA LP distribution (at a concentration of 1000 ng/ml) was also determined in patient plasma samples with defined dyslipidemias. Furthermore, 3H-CSA LP distribution was determined in patient plasma samples of varying LP lipid concentrations. Following incubation, the plasma samples were separated into their LP and LPDP fractions by sequential phosphotungistic acid precipitation in the dyslipidemia studies and by density gradient ultracentrifugation in the specific lipid profile studies and assayed for CSA by radioactivity. Total plasma and lipoprotein cholesterol (TC), triglyceride (TG) and protein (TP) concentrations in each sample were determined by enzymatic assays. Results. When the LP distribution of CSA was determined using three different LP separation techniques, the percent of CSA recovered in the LP-rich fraction was greater than 90% and the LP binding profiles were similar with most of the drug bound to plasma high-density (HDL) and low-density (LDL) lipoproteins. When 3H-CSA was incubated in dyslipidemic human plasma or specific patient plasma of varying LP lipid concentrations the following relationships were observed. As the very low-density (VLDL) and LDL cholesterol and triglyceride concentrations increased, the percent of CSA recovered within the VLDL and LDL fractions increased. The percent of CSA recovered within the HDL fraction significantly decreased as HDL triglyceride concentrations increased. The percent of CSA recovered in the LPDP fraction remained constant except in hypercholesterolemic/hypertriglyceridemic plasma where the percent of CSA recovered decreased. Furthermore, increases in VLDL and HDL TG/TC ratio resulted in a greater percentage of CSA recovered in VLDL but less in HDL. Conclusions. These findings suggest that changes in the total and plasma LP lipid concentration and composition influence the LP binding of CSA and may explain differences in the pharmacological activity and toxicity of CSA when administered to patients with different lipid profiles.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Electrophoresis 19 (1998), S. 2848-2855 
    ISSN: 0173-0835
    Keywords: Review ; Capillary electrophoresis ; Drug ; Monitoring ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Therapeutic drug monitoring is commonly used in both the ambulatory and hospital patient care settings. Routine measurement of concentrations of therapeutic agents in biological fluids is critical for certain drugs to maintain therapeutic benefit with minimizing drug-associated toxicities. Many analytical laboratory techniques are currently available to measure drug concentrations in biological samples. Recently there has been an increased interest in the use of capillary electrophoresis (CE) for measuring concentrations of therapeutic drugs in patient samples. However, while there are numerous reports of CE being used to measure drug concentrations in solution and pharmaceutical dosage forms, there are relatively few reports of the use of CE for measuring therapeutic agents in patient samples. The purpose of this paper is to provide an overview of methods currently used to measure therapeutic drugs in patient samples along with possible future trends for the use of CE in therapeutic drug monitoring.
    Additional Material: 2 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...