ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 29 (1990), S. 2304-2311 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 23 (1984), S. 6041-6046 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 1. The taxonomic composition and biomass of the phytoplankton and the taxonomic composition of the phytobenthos of the San Joaquin River and its major tributaries were examined in relation to water chemistry, habitat and flow regime. Agricultural drainage and subsurface flow contribute to a complex gradient of salinity and nutrients in this eutrophic, ‘lowland type’ river.2. Because of light-limiting conditions for growth, maintenance demands of the algae exceed production during summer and autumn in the San Joaquin River where there is no inflow from tributaries. In contrast to substantial gains in concentration of inorganic nitrogen and soluble reactive phosphorus during the summer of normal-flow years, net losses of algal biomass (2–4 μg L−1 day−1 chlorophyll a) occurred in a mid-river segment with no significant tributary inflow. However, downstream of a large tributary draining the Sierra Nevada, a substantial net gain in algal biomass (6–11 μg L−1 day−1) occurred in the summer, but not in the spring (loss of 1–6 μg L−1 day−1) or autumn (loss of 2–5 μg L−1 day−1).3. The phytoplankton was dominated in summer by ‘r-selected’ centric diatoms (Thalassiosirales), species both tolerant of variable salinity and widely distributed in the San Joaquin River. Pennate diatoms were proportionally more abundant (in biomass) in the winter, spring and autumn. Abundant taxa included the diatoms Cyclotella meneghiniana, Skeletonema cf. potamos, Cyclostephanos invisitatus, Thalassiosira weissflogii, Nitzschia acicularis, N. palea and N. reversa, and the chlorophytes Chlamydomonas sp. and Scenesdesmus quadricauda. Patterns in the abundance of species indicated that assembly of the phytoplankton is limited more by light and flow regime than by nutrient supply.4. The phytobenthos was dominated by larger, more slowly reproducing pennate diatoms. Few of the abundant species are euryhaline. The diatoms Navicula recens and Nitzschia inconspicua and cyanophytes, Oscillatoria spp., were the principal late-summer benthic species upstream in the mainstem and in drainages of the San Joaquin Valley. Many of the other abundant diatoms (Amphora veneta, Bacillaria paxillifer, Navicula symmetrica, Nitzschia amphibia, N. fonticola, N. palea, Pleurosigma salinarum) of late-summer assemblages in these segments also are motile species. While many of these species also were abundant in segments downstream of confluences with rivers draining the Sierra Nevada, the relative abundance of prostrate (Cocconeis placentula var. euglypta, Navicula minima) and erect or stalked (Achnanthidium deflexum, Achnanthes lanceolata, Gomphonema kobayasii, G. parvulum var. lagenula) diatoms and Stigeoclonium sp. was greater in these lower San Joaquin River segments.5. A weighted-averaging regression model, based on salinity and benthic-algal abundance in the San Joaquin River and segments of its major tributaries within the San Joaquin Valley, yielded a highly significant coefficient-of-determination (r2=0.84) and low prediction error between salinity inferred from the species and that observed, indicating that salinity tolerance is a primary constraint on growth and assembly of the phytobenthos. The same measures of predictability indicated poor performance of a model based on inorganic nitrogen. However, with a greater representation of tributaries (including segments within the Sierra Nevada foothills) in the sample set, an inorganic nitrogen model also yielded a highly significant coefficient-of-determination (r2=0.87) and low prediction error between the species-inferred and the observed concentration. As with the salinity model (r2=0.94) for the enlarged data set, a systematic difference (increased deviation of residuals) existed at high inorganic nitrogen concentrations. These results indicate substantial interaction between salinity and inorganic nitrogen as constraints on the structure of benthic-algal communities of the San Joaquin River basin.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1424
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Proton magnetic resonance (PMR) and carbon-13 magnetic resonance (CMR) spectra of intact, unsonicated yeast and rat liver motochondria show differences which may be correlated with the composition of the membranes. High resolution PMR and CMR signals in intact yeast mitochondria have been assigned to regions of fluid lipid-lipid interaction on the basis of spectra of extracted lipid and protein, and the temperature dependence of NMR signals from the intact membrane. PMR spectra suggest that about 20% of total yeast phospholipid is in regions where both intramolecular fatty acid chain mobility and lateral diffusion of entire phospholipid molecules are possible. No such regions appear to exist in rat liver mitochondria. For both yeast and rat liver mitochondria, comparison of PMR and CMR spectra suggests that about 50% of phospholipid appears to be in regions where intramolecular fatty acid chain motion is considerable, but lateral diffusion is restricted. The remaining phospholipid appears to have little inter- or intramolecular mobility. Since NMR observation of lipid extracts from membranes indicates that phospholipid-sterol interactions do not account for the spectra of intact mitochondria, these effects are interpreted in terms of extensive lipid-protein interactions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1424
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Promitochondrial membranes, prepared fromSaccharomyces cerevisiae grown anaerobically under different conditions of lipid supplementation, have been examined by PMR spectroscopy. Promitochondria from cells cultured anaerobically in media containing both unsaturated fatty acid and sterol supplements, or containing unsaturated fatty acid alone, yield high resolution spectra similar to those which are characteristic of aerobic mitochondria. By contrast, promitochondrial membranes from cells grown only with sterol supplementation in order to deplete unsaturated fatty acid and total phospholipid content of the organelles, yielded PMR spectra which were very substantially broadened. These spectra are similar to those obtained with rat liver mitochondria. PMR spectra of promitochondria from each cell type dispersed in trifluoroacetic acid, or of extracted lipids or residual proteins similarly dispersed, were different only in detail. It appears, therefore, that in the native state membranes of unsaturated fatty acid-depleted promitochondria are structurally different from promitochondria of the other two cell types. The difference may be a consequence of altered lipid-to-protein ratios, and thus of changes in the extent of lipid domain formation in the membranes of these organelles.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Environmental biology of fishes 57 (2000), S. 251-269 
    ISSN: 1573-5133
    Keywords: introduced species ; native species ; water quality ; habitat quality ; bioassessments ; multivariate analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Twenty sites in the lower San Joaquin River drainage, California, were sampled from 1993 to 1995 to characterize fish communities and their associations with measures of water quality and habitat quality. The feasibility of developing an Index of Biotic Integrity was assessed by evaluating four fish community metrics, including percentages of native fish, omnivorous fish, fish intolerant of environmental degradation, and fish with external anomalies. Of the thirty-one taxa of fish captured during the study, only 10 taxa were native to the drainage. Multivariate analyses of percentage data identified four site groups characterized by different groups of species. The distributions of fish species were related to specific conductance, gradient, and mean depth; however, specific conductance acted as a surrogate variable for a large group of correlated variables. Two of the fish community metrics – percentage of introduced fish and percentage of intolerant fish – appeared to be responsive to environmental quality but the responses of the other two metrics – percentage of omnivorous fish and percentage of fish with anomalies – were less direct. The conclusion of the study is that fish communities are responsive to environmental conditions, including conditions associated with human-caused disturbances, particularly agriculture and water development. The results suggest that changes in water management and water quality could result in changes in species distributions. Balancing the costs and benefits of such changes poses a considerable challenge to resource managers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Environmental biology of fishes 26 (1989), S. 223-236 
    ISSN: 1573-5133
    Keywords: Cottus pitensis ; Cottus klamathensis macrops ; Cottius asperrimus ; Physiological ecology ; Routine metabolic rate ; Final temperature preferenda
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Synopsis I examined the temperature preferences and routine metabolic rates of Pit sculpin, Cottius pitensis, marbled sculpin, C. klamathensis macrops, and rough sculpin, C. asperrimus, of the Pit River drainage of California to determine if the distributional patterns of these species can be explained on the basis of physiological or behavioral responses to temperature. The routine metabolic rates of these species did not increase significantly between 10 and 15°C, indicating an area of thermal compensation. Metabolic rates then rapidly increased between 15 and 20°C (Q10 values〉4.0) followed by little increase between 20 and 25°C (Q10 values 〉2.0), indicating another area of thermal compensation. The final temperature preferenda of Pit, marbled and rough sculpin were 11.2, 12.1 and 13.5°C, respectively. Marbled and rough sculpin appear to be more stenothermal than Pit sculpin. At acclimation temperatures of 10, 15 and 20°C the acute preferred temperatures of marbled and rough sculpin ranged from 11.1 to 14.7° C and 13.3 to 14.4°C, respectively. Values for Pit sculpin ranged from 9.9 to 16.4°C at acclimation temperatures of 10, 15 and 20°C. The distributions of marbled and rough sculpin are consistent with their behavioral and metabolic responses to temperature. The widespread distribution of Pit sculpin is consistent with its greater tolerance of high temperatures and eurythermal behavior, but the absence of Pit sculpin from habitats dominated by marbled and rough sculpin is not consistent with a temperature related explanation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-5133
    Keywords: Fishes ; Cottidae ; Distribution ; Habitat use ; Diet ; Life history ; Amphidromous ; Size structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Synopsis We documented species' distributions, size structure of populations, abundance in mainstem and tributary streams, habitat use, and diets of prickly sculpin, Cottus asper, and coastrange sculpin, C. aleuticus, in the Eel River drainage of California, to determine the processes allowing coexistence of these very similar fishes. We observed prickly sculpins at 43 sites and coastrange sculpins at 34. The species co-occurred at 26 sites. Young-of-year coastrange sculpins were only observed within 42 km of the ocean, but young-of-year prickly sculpins were present throughout the species range. Mean, maximum, and minimum lengths of coastrange sculpins were positively correlated with distance from the ocean but no significant relationships were found for prickly sculpins. Absolute abundance of both species was highest in mainstem habitat (prickly sculpins = 0.6 sculpins m−2 and coastrange sculpins = 0.4 sculpins m−2) . Tributary densities of both species tended to be less than 0.1 sculpins m−2. The species inhabited very similar habitats and had very similar diets. Coastrange sculpin populations in upstream areas were maintained by immigration from downstream areas in contrast with prickly sculpin populations that produced young-of-year fish throughout their range. Densities were probably not high enough for interspecific interactions to be important. The factors limiting the upstream distribution of the species may include high water temperatures, stability of the stream bed, and behavior of the fish. In the past, the range of sculpins within the Eel River drainage probably fluctuated with changing physical conditions. Recent introductions of exotic species that compete with and prey upon sculpins, and ongoing human activities in the drainage could result in major reductions in the distribution and abundance of one or both species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...