ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-10-13
    Description: Quadratic programming problems (QPs) frequently appear in control engineering. For use on embedded platforms, a QP solver implementation is required in the programming language C. A new solver for quadratic optimization problems, EmbQP, is described, which was implemented in well readable C code. The algorithm is based on the dual method of Goldfarb and Idnani and solves strictly convex QPs with a positive definite objective function matrix and linear equality and inequality constraints. The algorithm is outlined and some details for an efficient implementation in C are shown, with regard to the requirements of embedded systems. The newly implemented QP solver is demonstrated in the context of control allocation of an over-actuated vehicle as application example. Its performance is assessed in a simulation experiment.
    Electronic ISSN: 2079-3197
    Topics: Electrical Engineering, Measurement and Control Technology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-05-16
    Description: The design of high–performance state estimators for future autonomous vehicles constitutes a challenging task, because of the rising complexity and demand for operational safety. In this application, a vehicle state observer with a focus on the estimation of the quantities position, yaw angle, velocity, and yaw rate, which are necessary for a path following control for an autonomous vehicle, is discussed. The synthesis of the vehicle’s observer model is a trade-off between modelling complexity and performance. To cope with the vehicle still stand situations, the framework provides an automatic event handling functionality. Moreover, by means of an efficient root search algorithm, map-based information on the current road boundaries can be determined. An extended moving horizon state estimation algorithm enables the incorporation of delayed low bandwidth Global Navigation Satellite System (GNSS) measurements—including out of sequence measurements—as well as the possibility to limit the vehicle position change through the knowledge of the road boundaries. Finally, different moving horizon observer configurations are assessed in a comprehensive case study, which are compared to a conventional extended Kalman filter. These rely on real-world experiment data from vehicle testdrive experiments, which show very promising results for the proposed approach.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-10-11
    Description: Future electrified autonomous vehicles demand higly accurate knowledge of their system states to guarantee a high-fidelity and reliable control. This constitutes a challenging task—firstly, due to rising complexity and operational safeness, and secondly, due to the need for embedded service oriented architecture which demands a continuous development of new functionalities. Based on this, a novel model based Kalman filter framework is outlined in this publication, which enables the automatic incorporation of multiphysical Modelica models into discrete-time estimation algorithms. Additionally, these estimation algorithms are extended with nonlinear inequality constraint handling functionalities. The proposed framework is applied to a constrained nonlinear state of charge lithium-ion cell observer and is validated with experimental data.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-26
    Description: Traffic congestion and the occurrence of traffic accidents are problems that can be mitigated by applying cooperative adaptive cruise control (CACC). In this work, we used deep reinforcement learning for CACC and assessed its potential to outperform model-based methods. The trade-off between distance-error minimization and energy consumption minimization whilst still ensuring operational safety was investigated. Alongside a string stability condition, robustness against burst errors in communication also was incorporated, and the effect of preview information was assessed. The controllers were trained using the proximal policy optimization algorithm. A validation by comparison with a model-based controller was performed. The performance of the trained controllers was verified with respect to the mean energy consumption and the root mean squared distance error. In our evaluation scenarios, the learning-based controllers reduced energy consumption in comparison to the model-based controller by 17.9% on average.
    Electronic ISSN: 2076-0825
    Topics: Electrical Engineering, Measurement and Control Technology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...