ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Two-dimensional CFD analysis for iced airfoils can be a labor-intensive task. The software toolkit SmaggIce 2D is being developed to help streamline the CFD process and provide the unique features needed for icing. When complete, it will include a combination of partially automated and fully interactive tools for all aspects of the tasks leading up to the flow analysis: geometry preparation, domain decomposition, block boundary discretization. gridding, and linking with a flow solver. It also includes tools to perform ice shape characterization, an important aid in determining the relationship between ice characteristics and their effects on aerodynamic performance. Completed tools, work-in-progress, and planned features of the software toolkit are presented here.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2001-211338 , AIAA Paper 2002-0380 , NAS 1.15:211338 , E-13149 , 40th AIAA Aerospace Sciences Meeting and Exhibit; Jan 14, 2002 - Jan 17, 2002; Reno, NV; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: SmaggIce version 1.2 is a computer program for preparing and analyzing iced airfoils. It includes interactive tools for (1) measuring ice-shape characteristics, (2) controlled smoothing of ice shapes, (3) curve discretization, (4) generation of artificial ice shapes, and (5) detection and correction of input errors. Measurements of ice shapes are essential for establishing relationships between characteristics of ice and effects of ice on airfoil performance. The shape-smoothing tool helps prepare ice shapes for use with already available grid-generation and computational-fluid-dynamics software for studying the aerodynamic effects of smoothed ice on airfoils. The artificial ice-shape generation tool supports parametric studies since ice-shape parameters can easily be controlled with the artificial ice. In such studies, artificial shapes generated by this program can supplement simulated ice obtained from icing research tunnels and real ice obtained from flight test under icing weather condition. SmaggIce also automatically detects geometry errors such as tangles or duplicate points in the boundary which may be introduced by digitization and provides tools to correct these. By use of interactive tools included in SmaggIce version 1.2, one can easily characterize ice shapes and prepare iced airfoils for grid generation and flow simulations.
    Keywords: Man/System Technology and Life Support
    Type: LEW-17399 , NASA Tech Briefs, August 2004; 16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: SmaggIce version 1.8 is a set of software tools for geometrical modeling of, and generation of grids that conform to, both clean and iced airfoils. Ice shapes, especially those that include rough surfaces, pose difficulty in generating high-quality grids that are essential for predicting airflows by use of computational fluid dynamics. SmaggIce version 1.8 contains software tools needed to overcome this difficulty. For a given airfoil, it allows the user to define the flow domain, decompose the domain into blocks, generate grids, merge gridded blocks, and control the density and smoothness of each grid. Among the unique features of version 1.8 is a thin C-shaped block, called a "viscous sublayer block," which is wrapped around an iced airfoil and its wake line and serves as a means to generate highly controlled grids near the rough ice surface. Users can modify block boundary shapes using control points of non-uniform rational B-spline (NURBS) curves. Concave ice regions can be smoothed during geometrical modeling or creation of the viscous sublayer block.
    Keywords: Man/System Technology and Life Support
    Type: LEW-17846-1 , NASA Tech Briefs, September 2006; 47
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: SmaggIce Version 2.0 is a software toolkit for geometric modeling and grid generation for two-dimensional, singleand multi-element, clean and iced airfoils. A previous version of SmaggIce was described in Preparing and Analyzing Iced Airfoils, NASA Tech Briefs, Vol. 28, No. 8 (August 2004), page 32. To recapitulate: Ice shapes make it difficult to generate quality grids around airfoils, yet these grids are essential for predicting ice-induced complex flow. This software efficiently creates high-quality structured grids with tools that are uniquely tailored for various ice shapes. SmaggIce Version 2.0 significantly enhances the previous version primarily by adding the capability to generate grids for multi-element airfoils. This version of the software is an important step in streamlining the aeronautical analysis of ice airfoils using computational fluid dynamics (CFD) tools. The user may prepare the ice shape, define the flow domain, decompose it into blocks, generate grids, modify/divide/merge blocks, and control grid density and smoothness. All these steps may be performed efficiently even for the difficult glaze and rime ice shapes. Providing the means to generate highly controlled grids near rough ice, the software includes the creation of a wrap-around block (called the "viscous sublayer block"), which is a thin, C-type block around the wake line and iced airfoil. For multi-element airfoils, the software makes use of grids that wrap around and fill in the areas between the viscous sub-layer blocks for all elements that make up the airfoil. A scripting feature records the history of interactive steps, which can be edited and replayed later to produce other grids. Using this version of SmaggIce, ice shape handling and grid generation can become a practical engineering process, rather than a laborious research effort.
    Keywords: Man/System Technology and Life Support
    Type: LEW-18187-1 , NASA Tech Briefs, December 2007; 23-24
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: A series of heated tube experiments was performed to investigate fluid instabilities that occur during heating of supercritical fluids. In these tests, JP-7 flowed vertically through small diameter tubes at supercritical pressures. Test section heated length, diameter, mass flow rate, inlet temperature, and heat flux were varied in an effort to determine the range of conditions that trigger the instabilities. Heat flux was varied up to 4 BTU/sq in./s, and test section wall temperatures reached as high as 1950 F. A statistical model was generated to explain the trends and effects of the control variables. The model included no direct linear effect of heat flux on the occurrence of the instabilities. All terms involving inlet temperature were negative, and all terms involving mass flow rate were positive. Multiple tests at conditions that produced instabilities provided inconsistent results. These inconsistencies limit the use of the model as a predictive tool. Physical variables that had been previously postulated to control the onset of the instabilities, such as film temperature, velocity, buoyancy, and wall-to-bulk temperature ratio, were evaluated here. Film temperatures at or near critical occurred during both stable and unstable tests. All tests at the highest velocity were stable, but there was no functional relationship found between the instabilities and velocity, or a combination of velocity and temperature ratio. Finally, all of the unstable tests had significant buoyancy at the inlet of the test section, but many stable tests also had significant buoyancy forces.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2000-210345 , E-12392 , NAS 1.15:210345 , AIAA Paper 2000-3128 , Joint Propulsion; Jul 16, 2000 - Jul 19, 2000; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: SmaggIce (Surface Modeling and Grid Generation for Iced Airfoils) is a software toolkit used in the process of aerodynamic performance prediction of iced airfoils with grid-based Computational Fluid Dynamics (CFD). It includes tools for data probing, boundary smoothing, domain decomposition, and structured grid generation and refinement. SmaggIce provides the underlying computations to perform these functions, a GUI (Graphical User Interface) to control and interact with those functions, and graphical displays of results, it is being developed at NASA Glenn Research Center. This paper discusses the overall design of SmaggIce as well as what has been implemented in Phase 1. Phase 1 results provide two types of software tools: interactive ice shape probing and interactive ice shape control. The ice shape probing tools will provide aircraft icing engineers and scientists with an interactive means to measure the physical characteristics of ice shapes. On the other hand, the ice shape control features of SmaggIce will allow engineers to examine input geometry data, correct or modify any deficiencies in the geometry, and perform controlled systematic smoothing to a level that will make the CFD process manageable.
    Keywords: Aerodynamics
    Type: NASA/TM-1999-209678 , NAS 1.15:209678 , AIAA Paper 2000-0235 , E-12033 , 38th Aerospace Sciences Meeting; Jan 10, 2000 - Jan 13, 2000; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Two-dimensional CID analysis for iced airfoils can be a labor-intensive task. The software toolkit SmaggIce 2D is being developed to help streamline the CID process and provide the unique features needed for icing. When complete, it will include a combination of partially automated and fully interactive tools for all aspects of the tasks leading up to the flow analysis: geometry preparation, domain decomposition. block boundary demoralization. gridding, and linking with a flow solver. It also includes tools to perform ice shape characterization, an important aid in determining the relationship between ice characteristics and their effects on aerodynamic performance. Completed tools, work-in-progress, and planned features of the software toolkit are presented here.
    Keywords: Computer Programming and Software
    Type: NASA/TM-2001-211338 , E-13149 , NAS 1.15:211338 , AIAA Paper 2002-0380 , 40th AIAA Aerospace Sciences Meeting and Exhibit; Jan 14, 2002 - Jan 17, 2002; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Dynamic data from tests of a T55-L-712 engine are presented. Engine stall/surge data were analyzed using digital signal processing techniques. In addition, forced response testing (system identification studies) was done at various engine speeds. Forced response testing was done using eight jet ejectors approximately equally circumferentially spaced about the compressor front face. This paper presents some preliminary results for the ground idle (approximately 60% of design speed) point. Brief descriptions of the jet injection system, the test matrix, and analysis techniques used are presented. Results of these analyses indicate a substantial transfer of energy across the compressor first stage at some frequencies and that the ejectors are effective in modifying the local flow conditions in front of the first compressor stage.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-TM-107282 , NAS 1.15:107282 , AIAA Paper 96-2573 , E-10357 , ARL-TR-1151 , Joint Propulsion Conference; Jul 01, 1996 - Jul 03, 1996; Lake Buena Vista, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The Surface Modeling and Grid Generation for Iced Airfoils (SmaggIce) software toolkit has been extended to allow interactive grid generation for multi-element iced airfoils. The essential phases of an icing effects study include geometry preparation, block creation and grid generation. SmaggIce Version 2.0 now includes these main capabilities for both single and multi-element airfoils, plus an improved flow solver interface and a variety of additional tools to enhance the efficiency and accuracy of icing effects studies. An overview of these features is given, especially the new multi-element blocking strategy using the multiple wakes method. Examples are given which illustrate the capabilities of SmaggIce for conducting an icing effects study for both single and multi-element airfoils.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA/TM-2008-214829 , AIAA Paper 2007-0502 , E-16022 , 45th Aerospace Sciences Meeting and Exhibit; Jan 08, 2007 - Jan 11, 2007; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-10
    Description: TURBO-GRD is a software system for interactive two-dimensional boundary/field grid generation. modification, and refinement. Its features allow users to explicitly control grid quality locally and globally. The grid control can be achieved interactively by using control points that the user picks and moves on the workstation monitor or by direct stretching and refining. The techniques used in the code are the control point form of algebraic grid generation, a damped cubic spline for edge meshing and parametric mapping between physical and computational domains. It also performs elliptic grid smoothing and free-form boundary control for boundary geometry manipulation. Internal block boundaries are constructed and shaped by using Bezier curve. Because TURBO-GRD is a highly interactive code, users can read in an initial solution, display its solution contour in the background of the grid and control net, and exercise grid modification using the solution contour as a guide. This process can be called an interactive solution-adaptive grid generation.
    Keywords: Computer Programming and Software
    Type: NASA/TM-1998-206631 , NAS 1.15:206631 , ICOMP-98-02 , E-11082
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...