ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: This paper describes the test campaigns designed to investigate and demonstrate viability of using classical magnetoplasmadynamics to obtain a propulsive momentum transfer via the quantum vacuum virtual plasma. This paper will not address the physics of the quantum vacuum plasma thruster (QVPT), but instead will describe the recent test campaign. In addition, it contains a brief description of the supporting radio frequency (RF) field analysis, lessons learned, and potential applications of the technology to space exploration missions. During the first (Cannae) portion of the campaign, approximately 40 micronewtons of thrust were observed in an RF resonant cavity test article excited at approximately 935 megahertz and 28 watts. During the subsequent (tapered cavity) portion of the campaign, approximately 91 micronewtons of thrust were observed in an RF resonant cavity test article excited at approximately 1933 megahertz and 17 watts. Testing was performed on a low-thrust torsion pendulum that is capable of detecting force at a single-digit micronewton level. Test campaign results indicate that the RF resonant cavity thruster design, which is unique as an electric propulsion device, is producing a force that is not attributable to any classical electromagnetic phenomenon and therefore is potentially demonstrating an interaction with the quantum vacuum virtual plasma.
    Keywords: Spacecraft Propulsion and Power
    Type: JSC-CN-31446 , AIAA/ASME/SAE/ASEE Joint Propulsion Conference (JPC); Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-20
    Description: Final document is attached. In 2018, the International Space Station (ISS) [Figure 1] partnership completed a revision for the third edition of the International Space Station Benefits for Humanity, a compilation of case studies of benefits being realized from ISS activities in the areas of human health, Earth observations and disaster response, innovative technology, global education, and economic development of space. The revision included new assessments of economic value and scientific value with more detail than the second edition. The third edition contains updated statistics on the impacts of the benefits as well as new benefits that have developed since the previous publication. This presentation will summarize the updates on behalf of the ISS Program Science Forum, which consists of senior science representatives across the ISS international partnership. An independent consultant determined the economic valuation (EV) of ISS research benefits case studies and the third edition contains the results. The process involved a preliminary assessment of economic, social, and innovation factors. A more detailed assessment followed, which included factors such as addressable market, market penetration, revenue generation, ability to leverage across other applications or customer groups, quality of life improvements, health benefits, environmental benefits, cultural and community cohesion, inspiration, new knowledge, novel approaches, creation of a unique market niche, and research leadership. Because of the unique microgravity environment of the ISS laboratory, the multidisciplinary and international nature of the research, and the significance of the investment in its development, analyzing ISS scientific impacts is an exceptional challenge. As a result, the ISS partnership determined the scientific valuation (SV) of ISS research using a combination of citation analyses, bibliometrics, and narratives of important ISS utilization results. Approximately 2,100 ISS results publications comprised of scientific journal articles, conference proceedings, and gray literature, representing over 5,000 authors and co-authors on Earth were used in this evaluation to enable the communication of impacts of ISS research on various science and technology fields across many countries. The publication also updates and expands the previously described benefits of research results in the areas of space commerce, technology development, human health, environmental change and disaster response, and education activities. Distinct benefits return to Earth from the only orbiting multidisciplinary laboratory of its kind. The ISS is a stepping-stone for future space exploration while also providing findings that develop low Earth orbit as a place for sustained human activity and improve life on our planet.
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN61292 , International Astronautical Congress (IAC); Oct 01, 2018 - Oct 05, 2018; Bremen; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Description: In 2018, the International Space Station (ISS) [Figure 1] partnership completed a revision for the third edition of the International Space Station Benefits for Humanity, a compilation of case studies of benefits being realized from ISS activities in the areas of human health, Earth observations and disaster response, innovative technology, global education, and economic development of space. The revision included new assessments of economic value and scientific value with more detail than the second edition. The third edition contains updated statistics on the impacts of the benefits as well as new benefits that have developed since the previous publication. This presentation will summarize the updates on behalf of the ISS Program Science Forum, which consists of senior science representatives across the ISS international partnership. An independent consultant determined the economic valuation (EV) of ISS research benefits case studies and the third edition contains the results. The process involved a preliminary assessment of economic, social, and innovation factors. A more detailed assessment followed, which included factors such as addressable market, market penetration, revenue generation, ability to leverage across other applications or customer groups, quality of life improvements, health benefits, environmental benefits, cultural and community cohesion, inspiration, new knowledge, novel approaches, creation of a unique market niche, and research leadership. Because of the unique microgravity environment of the ISS laboratory, the multidisciplinary and international nature of the research, and the significance of the investment in its development, analyzing ISS scientific impacts is an exceptional challenge. As a result, the ISS partnership determined the scientific valuation (SV) of ISS research using a combination of citation analyses, bibliometrics, and narratives of important ISS utilization results. Approximately 2,100 ISS results publications comprised of scientific journal articles, conference proceedings, and gray literature, representing over 5,000 authors and co-authors on Earth were used in this evaluation to enable the communication of impacts of ISS research on various science and technology fields across many countries. The publication also updates and expands the previously described benefits of research results in the areas of space commerce, technology development, human health, environmental change and disaster response, and education activities. Distinct benefits return to Earth from the only orbiting multidisciplinary laboratory of its kind. The ISS is a stepping-stone for future space exploration while also providing findings that develop low Earth orbit as a place for sustained human activity and improve life on our planet.
    Keywords: Social and Information Sciences (General); Astronautics (General)
    Type: JSC-E-DAA-TN61387 , International Astronautical Congress (IAC); Oct 01, 2018 - Oct 05, 2018; Bremen; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-13
    Description: The capabilities and limitations of a particular system design are well known by the people who operate it. Operational workarounds, operational notes and lessons learned are traditional methods for dealing with and documenting design shortcomings. The beginning of each new program brings the hope that hard-learned lessons will be incorporated into the next new system. But often operations personnel find their well-intentioned efforts frustrated by an inability to have their inputs considered by design personnel who have strictly-scoped requirements that are coupled with ambitious cost and schedule targets. There is a way for operational inputs to make it into the design, but the solution involves a combination of organizational culture and technical data. Any organization that utilizes this approach can realize significant benefits over the life cycle of their project.
    Keywords: Systems Analysis and Operations Research
    Type: JSC-CN-18681 , AIAA SpaceOps 2010 Conference; Apr 25, 2010 - Apr 30, 2010; Hunstville, AL; United States|NASA Project Management Challenge 2010; Feb 09, 2010 - Feb 10, 2010; Washington, D.C.; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...