ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Call number: SR 90.0001(1683-D)
    In: U.S. Geological Survey bulletin
    Type of Medium: Series available for loan
    Pages: IV, D-39 S.
    Series Statement: U.S. Geological Survey bulletin 1683-D
    Language: English
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: SR 90.0001(1683-B)
    In: U.S. Geological Survey bulletin
    Type of Medium: Series available for loan
    Pages: IV, B-34 S.
    Series Statement: U.S. Geological Survey bulletin 1683-B
    Language: English
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Call number: SR 90.0001(1683-C)
    In: U.S. Geological Survey bulletin
    Type of Medium: Series available for loan
    Pages: IV, C-31 S.
    Series Statement: U.S. Geological Survey bulletin 1683-C
    Language: English
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Call number: S 90.0002(1654)
    In: Professional paper
    Type of Medium: Series available for loan
    Pages: VIII, getr. Zählung , graph. Darst., Kt.
    ISBN: 0607978155
    Series Statement: U.S. Geological Survey professional paper 1654
    Note: This report is intended for use with U.S. Geological Survey Geologic Investigations Series I-2584
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © Marine Biological Laboratory, 2006. This article is posted here by permission of Marine Biological Laboratory for personal use, not for redistribution. The definitive version was published in Biological Bulletin 210 (2006): 73-77.
    Description: Heterotrophic bacteria are commonly found in close associations with photosynthetic cyanobacteria in aquatic ecosystems. Some of these associations can be species-specific and mutualistic, resulting in optimal growth and nitrogen-fixing potential for the cyanobacteria. A two-membered culture, consisting of a heterotrophic, epibiotic bacterium attached to an Anabaena sp. was studied in the work reported here. The epibiotic bacterium was grown in pure culture, and both organisms were identified on the basis of their 16S rRNA gene sequence. The specificity of the epibiont for the Anabaena sp. heterocysts was confirmed by re-association experiments. The epibiont is a member of the Alphaproteobacteria in the order Rhizobiales, with close relatives that include a group of aerobic anoxygenic photosynthetic marine isolates commonly associated with dinoflagellate phytoplankton. The close association of the epibiotic bacterium with its Anabaena host, and its phylogenic affiliation allude to the evolutionary history of association with photosynthetic organisms for a group of Rhizobia and warrant further investigation.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Journal of Cell Biology 193 (2011): 1065-1081, doi:10.1083/jcb.201012143.
    Description: The septins are conserved, GTP-binding proteins important for cytokinesis, membrane compartmentalization, and exocytosis. However, it is unknown how septins are arranged within higher-order structures in cells. To determine the organization of septins in live cells, we developed a polarized fluorescence microscopy system to monitor the orientation of GFP dipole moments with high spatial and temporal resolution. When GFP was fused to septins, the arrangement of GFP dipoles reflected the underlying septin organization. We demonstrated in a filamentous fungus, a budding yeast, and a mammalian epithelial cell line that septin proteins were organized in an identical highly ordered fashion. Fluorescence anisotropy measurements indicated that septin filaments organized into pairs within live cells, just as has been observed in vitro. Additional support for the formation of pairs came from the observation of paired filaments at the cortex of cells using electron microscopy. Furthermore, we found that highly ordered septin structures exchanged subunits and rapidly rearranged. We conclude that septins assemble into dynamic, paired filaments in vivo and that this organization is conserved from yeast to mammals.
    Description: This work was supported by the National Science Foundation under grant No. MCB-0719126 to A.S. Gladfelter, the National Institute of Biomedical Imaging and Bioengineering under grant No. EB002583 to R. Oldenbourg, a Drexel CURE grant from the State of Pennsylvania Tobacco Settlement Fund, and National Institute of Neurological Disorders and Stroke grant NS48090- 06A to E.T. Spiliotis.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 7 (2016): 59, doi:10.3389/fmicb.2016.00059.
    Description: Interactions between phytoplankton and bacteria play a central role in mediating biogeochemical cycling and food web structure in the ocean. However, deciphering the chemical drivers of these interspecies interactions remains challenging. Here, we report the isolation of 2-heptyl-4-quinolone (HHQ), released by Pseudoalteromonas piscicida, a marine gamma-proteobacteria previously reported to induce phytoplankton mortality through a hitherto unknown algicidal mechanism. HHQ functions as both an antibiotic and a bacterial signaling molecule in cell–cell communication in clinical infection models. Co-culture of the bloom-forming coccolithophore, Emiliania huxleyi with both live P. piscicida and cell-free filtrates caused a significant decrease in algal growth. Investigations of the P. piscicida exometabolome revealed HHQ, at nanomolar concentrations, induced mortality in three strains of E. huxleyi. Mortality of E. huxleyi in response to HHQ occurred slowly, implying static growth rather than a singular loss event (e.g., rapid cell lysis). In contrast, the marine chlorophyte, Dunaliella tertiolecta and diatom, Phaeodactylum tricornutum were unaffected by HHQ exposures. These results suggest that HHQ mediates the type of inter-domain interactions that cause shifts in phytoplankton population dynamics. These chemically mediated interactions, and other like it, ultimately influence large-scale oceanographic processes.
    Description: This research was support through funding from the Gordon and Betty Moore Foundation through Grant GBMF3301 to MJ and TM; NIH grant from the National Institute of Allergy and Infectious Disease (NIAID – 1R21Al119311-01) to TM and KW; the National Science Foundation (OCE – 1313747) and US National Institute of Environmental Health Science (P01-ES021921) through the Oceans and Human Health Program to BM. Additional financial support was provided to TM from the Flatley Discovery Lab.
    Keywords: Infochemicals ; Algicidal compound ; Bacteria–phytoplankton interaction ; HHQ ; Pseudoalteromonas ; Emiliania huxleyi ; IC50 ; Mortality
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2016. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of United States of America 113 (2016): 3797-3802, doi: 10.1073/pnas.1519695113.
    Description: Halogenated pyrroles (halopyrroles) are common chemical moieties found in bioactive bacterial natural products. The halopyrrole moieties of mono- and di- halopyrrole-containing compounds arise from a conserved mechanism in which a proline-derived pyrrolyl group bound to a carrier protein is first halogenated then elaborated by peptidic or polyketide extensions. This paradigm is broken during the marine pseudoalteromonad bacterial biosynthesis of the coral larval settlement cue tetrabromopyrrole (1), which arises from the substitution of the proline-derived carboxylate by a bromine atom. To understand the molecular basis for decarboxylative bromination in the biosynthesis of 1, we sequenced two Pseudoalteromonas genomes and identified a conserved four-gene locus encoding the enzymes involved its complete biosynthesis. Through total in vitro reconstitution of the biosynthesis of 1 using purified enzymes and biochemical interrogation of individual biochemical steps, we show that all four bromine atoms in 1 are installed by the action of a single flavin-dependent halogenase- Bmp2. Tetrabromination of the pyrrole induces a thioesterase-mediated offloading reaction from the carrier protein and activates the biosynthetic intermediate for decarboxylation. Insights into the tetrabrominating activity of Bmp2 were obtained from the high-resolution crystal structure of the halogenase contrasted against structurally homologous halogenase Mpy16 that forms only a dihalogenated pyrrole in marinopyrrole biosynthesis. Structure-guided mutagenesis of the proposed substrate-binding pocket of Bmp2 led to a reduction in the degree of halogenation catalyzed. Our study provides a biogenetic basis for the biosynthesis of 1, and sets a firm foundation for querying the biosynthetic potential for the production of 1 in marine (meta)genomes.
    Description: This work was jointly supported by the US National Science Foundation (OCE-1313747) and the US National Institute of Environmental Health Sciences (P01-ES021921) through the Ocean and Human Health Program to B.S.M., and the US National Institute of Allergy and Infectious Disease R01-AI47818 to B.S.M. and R21- AI119311 to K.E.W. and T.J.M., the Mote Protect Our Reef Grant Program (POR-2012-3), the Dart Foundation, the Smithsonian Competitive Grants Program for Science to V.J.P., the Howard Hughes Medical Institute to J.P.N., the US National Institutes of Health (NIH) Marine Biotechnology Training Grant predoctoral fellowship to A.E. (T32-GM067550), the Helen Hay Whitney Foundation postdoctoral fellowship to V.A., and a Swiss National Science Foundation (SNF) postdoctoral Fellowship to S.D.
    Description: 2016-09-21
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of organic chemistry 53 (1988), S. 1616-1623 
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of organic chemistry 51 (1986), S. 863-872 
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...