ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-12-03
    Description: Sources of seismic hazard in the Puget Sound region of northwestern Washington include deep earthquakes associated with the Cascadia subduction zone, and shallow earthquakes associated with some of the numerous crustal (upper-plate) faults that crisscross the region. Our paleoseismic investigations on one of the more prominent crustal faults, the Darrington–Devils Mountain fault zone, included trenching of fault scarps developed on latest Pleistocene glacial sediments and analysis of cores from an adjacent wetland near Lake Creek, 14 km southeast of Mount Vernon, Washington. Trench excavations revealed evidence of a single earthquake, radiocarbon dated to ca. 2 ka, but extensive burrowing and root mixing of sediments within 50–100 cm of the ground surface may have destroyed evidence of other earthquakes. Cores in a small wetland adjacent to our trench site provided stratigraphic evidence (formation of a laterally extensive, prograding wedge of hillslope colluvium) of an earthquake ca. 2 ka, which we interpret to be the same earthquake documented in the trenches. A similar colluvial wedge lower in the wetland section provides possible evidence for a second earthquake dated to ca. 8 ka. Three-dimensional trenching techniques revealed evidence for 2.2 ± 1.1 m of right-lateral offset of a glacial outwash channel margin, and 45–70 cm of north-side-up vertical separation across the fault zone. These offsets indicate a net slip vector of 2.3 ± 1.1 m, plunging 14° west on a 286°-striking, 90°-dipping fault plane. The dominant right-lateral sense of slip is supported by the presence of numerous Riedel R shears preserved in two of our trenches, and probable right-lateral offset of a distinctive bedrock fault zone in a third trench. Holocene north-side-up, right-lateral oblique slip is opposite the south-side-up, left-lateral oblique sense of slip inferred from geologic mapping of Eocene and older rocks along the fault zone. The cause of this slip reversal is unknown but may be related to clockwise rotation of the Darrington–Devils Mountain fault zone into a position more favorable to right-lateral slip in the modern N-S compressional stress field.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-07-30
    Description: Earthquake prehistory of the southern Puget Lowland, in the north-south compressive regime of the migrating Cascadia forearc, reflects diverse earthquake rupture modes with variable recurrence. Stratigraphy and Bayesian analyses of previously reported and new 14 C ages in trenches and cores along backthrust scarps in the Seattle fault zone restrict a large earthquake to 1040–910 cal yr B.P. (2), an interval that includes the time of the M 7–7.5 Restoration Point earthquake. A newly identified surface-rupturing earthquake along the Waterman Point backthrust dates to 940–380 cal yr B.P., bringing the number of earthquakes in the Seattle fault zone in the past 3500 yr to 4 or 5. Whether scarps record earthquakes of moderate (M 5.5–6.0) or large (M 6.5–7.0) magnitude, backthrusts of the Seattle fault zone may slip during moderate to large earthquakes every few hundred years for periods of 1000–2000 yr, and then not slip for periods of at least several thousands of years. Four new fault scarp trenches in the Tacoma fault zone show evidence of late Holocene folding and faulting about the time of a large earthquake or earthquakes inferred from widespread coseismic subsidence ca. 1000 cal yr B.P.; 12 ages from 8 sites in the Tacoma fault zone limit the earthquakes to 1050–980 cal yr B.P. Evidence is too sparse to determine whether a large earthquake was closely predated or postdated by other earthquakes in the Tacoma basin, but the scarp of the Tacoma fault was formed by multiple earthquakes. In the northeast-striking Saddle Mountain deformation zone, along the western limit of the Seattle and Tacoma fault zones, analysis of previous ages limits earthquakes to 1200–310 cal yr B.P. The prehistory clarifies earthquake clustering in the central Puget Lowland, but cannot resolve potential structural links among the three Holocene fault zones.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-07-31
    Description: Despite the role of the Alaska-Aleutian megathrust as the source of some of the largest earthquakes and tsunamis, the history of its pre–twentieth century tsunamis is largely unknown west of the rupture zone of the great (magnitude, M 9.2) 1964 earthquake. Stratigraphy in core transects at two boggy lowland sites on Chirikof Island’s southwest coast preserves tsunami deposits dating from the postglacial to the twentieth century. In a 500-m-long basin 13–15 m above sea level and 400 m from the sea, 4 of 10 sandy to silty beds in a 3–5-m-thick sequence of freshwater peat were probably deposited by tsunamis. The freshwater peat sequence beneath a gently sloping alluvial fan 2 km to the east, 5–15 m above sea level and 550 m from the sea, contains 20 sandy to silty beds deposited since 3.5 ka; at least 13 were probably deposited by tsunamis. Although most of the sandy beds have consistent thicknesses (over distances of 10–265 m), sharp lower contacts, good sorting, and/or upward fining typical of tsunami deposits, the beds contain abundant freshwater diatoms, very few brackish-water diatoms, and no marine diatoms. Apparently, tsunamis traveling inland over low dunes and boggy lowland entrained largely freshwater diatoms. Abundant fragmented diatoms, and lake species in some sandy beds not found in host peat, were probably transported by tsunamis to elevations of 〉10 m at the eastern site. Single-aliquot regeneration optically stimulated luminescence dating of the third youngest bed is consistent with its having been deposited by the tsunami recorded at Russian hunting outposts in 1788, and with the second youngest bed being deposited by a tsunami during an upper plate earthquake in 1880. We infer from stratigraphy, 14 C-dated peat deposition rates, and unpublished analyses of the island’s history that the 1938 tsunami may locally have reached an elevation of 〉10 m. As this is the first record of Aleutian tsunamis extending throughout the Holocene, we cannot estimate source earthquake locations or magnitudes for most tsunami-deposited beds. We infer that no more than 3 of the 23 possible tsunamis beds at both sites were deposited following upper plate faulting or submarine landslides independent of megathrust earthquakes. If so, the Semidi segment of the Alaska-Aleutian megathrust near Chirikof Island probably sent high tsunamis southward every 180–270 yr for at least the past 3500 yr.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1994-01-01
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-02-01
    Description: A reconnaissance of Holocene stratigraphy beneath fringing marshes of the Valdivia estuary, where an M 9.5 earthquake caused 1-2 m of regional coseismic subsidence in 1960, shows only fragmentary evidence of prehistoric coseismic subsidence. In most of the 150 hand-driven cores that were examined, a distinct unconformity separates 0.5-1.5 m of late Holocene tidal and floodplain mud, peat, and sand from underlying middle Holocene subtidal mud and sand. At the Las Coloradas site, where stratigraphy is best preserved, two A horizons of marsh and meadow soils abruptly overlain by sand and mud probably record coseismic subsidence shortly followed by tsunamis. The amount of subsidence during the earthquakes proved difficult to reconstruct with a diatom transfer function because of differences between modern and fossil diatom assemblages. Maximum (super 14) C-ages on macrofossils from the two A horizons at the Las Coloradas site of 1.7-1.3 ka and 2.7-1.7 ka allow correlation of the younger horizon with either of two of six (super 14) C-dated A horizons buried by tsunami sand or post-tsunami tidal sand 200 km to the south at Maullin, and with a lake-wide mass wasting event in Lago Puyehue, 100 km to the southeast. Tidal records of prehistoric coseismic subsidence at Valdivia are scarce because of a sea-level fall of 3-8 m over the past 6000 years, erosion of marsh and meadow soils during subsidence-induced flooding of the estuary, and largely complete land-level recovery during cycles of coseismic subsidence and postseismic uplift.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Call number: K 06.0125 / Fach 31
    In: U.S. Geological Survey open-file report
    Type of Medium: Map available for loan
    Pages: 1 Kt., gefaltet
    Edition: Last revision February, 2000 / map prepared by L.-A. Bradley
    Series Statement: Open-file report / U.S. Geological Survey [20]00, 018
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...