ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-29
    Description: The high resolution X-Ray Spectrometer (XRS) has been designed to provide the Suzaku Observatory with very high spectral resolution, non-dispersive spectroscopy from 0.3 to 12 keV. This energy range encompasses the most diagnostically-rich part of the x-ray band. The sensor consists of a 32 channel array of x-ray of microcalorimeters, each with an energy resolution of about 6 eV. The very low temperature required for operation of the array (60 mK) is provided by a four-stage cooling system containing a single stage ADR, superfluid He Cryostat, solid Ne Dewar, and a single-stage Stirling-cycle cooler. The Suzaku/XRS is the first orbiting x-ray microcalorimeter spectrometer and has been designed to last more than three years in orbit. The early verification phase of the mission demonstrated that the instrument was working properly and that the cryogen consumption rate was low enough to ensure a mission lifetime exceeding 3 years. However, the liquid He cryogen was completely vaporized two weeks after opening the dewar guard vacuum vent. The problem has been traced to inadequate venting of the dewar He and Ne gases out of the spacecraft into space. In this paper we present the design of the XRS instrument and describe the in-flight performance.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The Infrared Multi-Object Spectrometer (IRMOS) is a principle investigator-class instrument for the Kitt Peak National Observatory 2.1 m and Mayall 3.8 m telescopes. IRMOS is a near-IR (0.8 - 2.5 micron) spectrometer with low-to mid-resolving power (R = lambda/delta lambda = 300 - 3000). On the 3.8 m telescope, IRMOS produces simultaneous spectra of approximately 100 objects in its approximately 3 x 2 arcmin field of view using a commercial micro electro-mechanical systems (MEMS) digital micro-mirror device (DMD) from Texas Instruments. The multi-mirror array DMD operates as a real-time programmable slit mask. The all-reflective optical design consists of two imaging subsystems. The focal reducer images the focal plane of the telescope onto the DMD field stop, and the spectrograph images the DMD onto a large-format detector. The instrument operates at approximately 80 K, cooled by a single electro-mechanical cryocooler. The bench and all components are made from aluminum 6061-T651. There are three cryogenic mechanisms. We describe laboratory integration and test of IRMOS before shipment to Kitt Peak. We give an overview of the optical alignment technique and integration of optical, mechanical, electrical and cryogenic subsystems. We compare optical test results to model predictions of point spread function size and morphology, contrast, and stray light. We discuss some lessons learned and conclude with a prediction for performance on the telescope.
    Keywords: Instrumentation and Photography
    Type: SPIE Astronomical Telescopes and Instrumentation; Jun 21, 2004 - Jun 25, 2004; Glasgow, Scotland; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: The Ramaty High Energy Solar Spectroscopic Imager (RHESSI) spacecraft was launched on February 5,2002. With more than a year of operation on-orbit, its Sunpower M77 cryocooler continues to maintain the array of nine germanium detectors at 7% Trends have begun to emerge in cryocooler power and vibration, suggesting that the cooler's operating point is slowly changing. Possible causes are identified and discussed.
    Keywords: Engineering (General)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The X-Ray Spectrometer (XRS) is an instrument on the Japanese Astro-E satellite, scheduled for launch early in the year 2000. The XRS Helium Insert comprises a superfluid helium cryostat, an Adiabatic Demagnetization Refrigerator (ADR), and the XRS calorimeters with their cold electronics. The calorimeters are capable of detecting X-rays over the energy range 0.1 to 10 keV with a resolution of 12 eV. The Helium Insert completed its performance and verification testing at Goddard in January 1999. It was shipped to Japan, where it has been integrated with the neon dewar built by Sumitomo Heavy Industries. The Helium Insert was given a challenging lifetime requirement of 2.0 years with a goal of 2.5 years. Based on the results of the thermal performance tests, the predicted on-orbit lifetime is 2.6 years with a margin of 30%. This is the result of both higher efficiency in the ADR cycle and the low temperature top-off, more than compensating for an increase in the parasitic heat load. This paper presents a summary of the key design features and the results of the thermal testing of the XRS Helium Insert.
    Keywords: Astronomy
    Type: Cryogenic Engineering; Jul 12, 1999 - Jul 16, 1999; Montreal; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Laboratory tests of a thermomechanical (TM) pump utilizing a commercially available porous disk have been conducted. Various size disks, heater configurations, and outlet flow impedances have been used to characterize scale models of the pump proposed for the Superfluid Helium On-Orbit Transfer (SHOOT) Flight Experiment. The results yield the scalability of the TM pump to larger diameters, and hence larger pumping rates, the dependence of flow rate on back pressure and heater power, and the limits of pumping speed due to internal losses within the porous disk due to mutual and superfluid friction. Analysis indicates that for low back pressures the flow rate is limited by the superfluid friction rather than the mutual friction. For the porous plug used in the early tests this amounts to a practical limit of 4.4 liters per hour per square centimeter. For a baselined flight plug area of 180 sq cm this yields 790 liters per hour.
    Keywords: ENGINEERING (GENERAL)
    Type: Advances in cryogenic engineering.; Jun 14, 1987 - Jun 18, 1987; Saint Charles, IL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-28
    Description: Cryogenic components and techniques for the superfluid helium on-orbit transfer (SHOOT) flight demonstration are described. Instrumentation for measuring liquid quantity, position, flow rate, temperature, and pressure has been developed using the data obtained from the IRAS, Cosmic Background Explorer, and Spacelab 2 helium dewars. Topics discussed include valves and burst disks, fluid management devices, structural/thermal components, instrumentation, and ground support equipment and performance test apparatus.
    Keywords: ENGINEERING (GENERAL)
    Type: Cryogenic Optical Systems and Instruments IV; Jul 10, 1990 - Jul 12, 1990; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...